Jonas Leeb
commited on
Commit
·
a7b2b6d
1
Parent(s):
66113e1
multiple deivces shouldnt interfer as much
Browse files
app.py
CHANGED
@@ -28,7 +28,7 @@ class ArxivSearch:
|
|
28 |
|
29 |
# model selection
|
30 |
self.embedding_dropdown = gr.Dropdown(
|
31 |
-
choices=["tfidf", "word2vec", "bert", "
|
32 |
value="bert",
|
33 |
label="Model"
|
34 |
)
|
@@ -56,9 +56,14 @@ class ArxivSearch:
|
|
56 |
inputs=[self.query_box, self.embedding_dropdown],
|
57 |
outputs=self.output_md
|
58 |
)
|
|
|
|
|
|
|
|
|
|
|
59 |
self.embedding_dropdown.change(
|
60 |
-
self.
|
61 |
-
inputs=[self.embedding_dropdown],
|
62 |
outputs=self.output_md
|
63 |
)
|
64 |
self.plot_button.click(
|
@@ -73,12 +78,12 @@ class ArxivSearch:
|
|
73 |
)
|
74 |
|
75 |
self.load_data(dataset)
|
76 |
-
self.load_model(embedding)
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
# self.load_model('scibert')
|
81 |
-
|
82 |
|
83 |
self.iface.launch()
|
84 |
|
@@ -139,8 +144,8 @@ class ArxivSearch:
|
|
139 |
reduced_data, reduced_results_points, query_point = self.plot_dense(self.bert_embeddings, pca, results_indices)
|
140 |
elif self.embedding == "sbert":
|
141 |
reduced_data, reduced_results_points, query_point = self.plot_dense(self.sbert_embedding, pca, results_indices)
|
142 |
-
elif self.embedding == "scibert":
|
143 |
-
|
144 |
else:
|
145 |
raise ValueError(f"Unsupported embedding type: {self.embedding}")
|
146 |
trace = go.Scatter3d(
|
@@ -241,17 +246,17 @@ class ArxivSearch:
|
|
241 |
print(f"sim, top_indices: {sims}, {top_indices}")
|
242 |
return [(i, sims[i]) for i in top_indices]
|
243 |
|
244 |
-
def scibert_search(self, query, top_n=10):
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
|
256 |
def sbert_search(self, query, top_n=10):
|
257 |
query_vec = self.sbert_model.encode([query])
|
@@ -312,11 +317,11 @@ class ArxivSearch:
|
|
312 |
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
313 |
self.model = BertModel.from_pretrained('bert-base-uncased')
|
314 |
self.model.eval()
|
315 |
-
elif self.embedding == "scibert":
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
elif self.embedding == "sbert":
|
321 |
self.sbert_model = SentenceTransformer("all-MiniLM-L6-v2")
|
322 |
self.sbert_embedding = np.load("BERT embeddings/sbert_embedding.npz")["sbert_embedding"]
|
|
|
28 |
|
29 |
# model selection
|
30 |
self.embedding_dropdown = gr.Dropdown(
|
31 |
+
choices=["tfidf", "word2vec", "bert", "sbert"],
|
32 |
value="bert",
|
33 |
label="Model"
|
34 |
)
|
|
|
56 |
inputs=[self.query_box, self.embedding_dropdown],
|
57 |
outputs=self.output_md
|
58 |
)
|
59 |
+
# self.embedding_dropdown.change(
|
60 |
+
# self.model_switch,
|
61 |
+
# inputs=[self.embedding_dropdown],
|
62 |
+
# outputs=self.output_md
|
63 |
+
# )
|
64 |
self.embedding_dropdown.change(
|
65 |
+
self.search_function,
|
66 |
+
inputs=[self.query_box, self.embedding_dropdown],
|
67 |
outputs=self.output_md
|
68 |
)
|
69 |
self.plot_button.click(
|
|
|
78 |
)
|
79 |
|
80 |
self.load_data(dataset)
|
81 |
+
# self.load_model(embedding)
|
82 |
+
self.load_model('tfidf')
|
83 |
+
self.load_model('word2vec')
|
84 |
+
self.load_model('bert')
|
85 |
# self.load_model('scibert')
|
86 |
+
self.load_model('sbert')
|
87 |
|
88 |
self.iface.launch()
|
89 |
|
|
|
144 |
reduced_data, reduced_results_points, query_point = self.plot_dense(self.bert_embeddings, pca, results_indices)
|
145 |
elif self.embedding == "sbert":
|
146 |
reduced_data, reduced_results_points, query_point = self.plot_dense(self.sbert_embedding, pca, results_indices)
|
147 |
+
# elif self.embedding == "scibert":
|
148 |
+
# reduced_data, reduced_results_points, query_point = self.plot_dense(self.scibert_embeddings, pca, results_indices)
|
149 |
else:
|
150 |
raise ValueError(f"Unsupported embedding type: {self.embedding}")
|
151 |
trace = go.Scatter3d(
|
|
|
246 |
print(f"sim, top_indices: {sims}, {top_indices}")
|
247 |
return [(i, sims[i]) for i in top_indices]
|
248 |
|
249 |
+
# def scibert_search(self, query, top_n=10):
|
250 |
+
# with torch.no_grad():
|
251 |
+
# inputs = self.sci_tokenizer(query, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
252 |
+
# outputs = self.sci_model(**inputs)
|
253 |
+
# query_vec = outputs.last_hidden_state[:, 0, :].numpy()
|
254 |
|
255 |
+
# self.query_encoding = query_vec
|
256 |
+
# sims = cosine_similarity(query_vec, self.scibert_embeddings).flatten()
|
257 |
+
# top_indices = sims.argsort()[::-1][:top_n]
|
258 |
+
# print(f"sim, top_indices: {sims}, {top_indices}")
|
259 |
+
# return [(i, sims[i]) for i in top_indices]
|
260 |
|
261 |
def sbert_search(self, query, top_n=10):
|
262 |
query_vec = self.sbert_model.encode([query])
|
|
|
317 |
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
318 |
self.model = BertModel.from_pretrained('bert-base-uncased')
|
319 |
self.model.eval()
|
320 |
+
# elif self.embedding == "scibert":
|
321 |
+
# self.scibert_embeddings = np.load("SciBERT_embeddings/scibert_embedding.npz")["bert_embedding"]
|
322 |
+
# self.sci_tokenizer = AutoTokenizer.from_pretrained('allenai/scibert_scivocab_uncased')
|
323 |
+
# self.sci_model = AutoModel.from_pretrained('allenai/scibert_scivocab_uncased')
|
324 |
+
# self.sci_model.eval()
|
325 |
elif self.embedding == "sbert":
|
326 |
self.sbert_model = SentenceTransformer("all-MiniLM-L6-v2")
|
327 |
self.sbert_embedding = np.load("BERT embeddings/sbert_embedding.npz")["sbert_embedding"]
|