12_ATBNN_Demo / train_BNN.py
JHao2830's picture
Upload 9 files
556849d
raw
history blame
9.1 kB
import random
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from torch.utils.data import Dataset, DataLoader
import net_BNN
def train(n_epochs,dataloader,val_dataloader,model,criterion,optimizer,device):
num_batches = len(dataloader)
num_sample = 10
model.train() #重要!设置模式
for epoch in range(n_epochs):
total_loss = 0
total_MSEloss = 0
for inputs,labels in dataloader:
inputs,labels = inputs.to(device),labels.to(device) #GPU
optimizer.zero_grad()
# MC sample
# sample_output = torch.zeros(num_sample, labels.shape[0]).to(device)
# for i in range(num_sample):
# sample_output[i] = model(inputs).reshape(-1)
#
# outputs = torch.Tensor(sample_output.mean(dim=0).unsqueeze(1))
outputs = model(inputs)
features = model.features
loss = model.bnn_regression.sample_elbo(features, labels, 10, device)
MSEloss = criterion(outputs,labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
total_MSEloss += MSEloss.item()
train_loss = total_loss / num_batches
train_MSEloss = total_MSEloss / num_batches
val_loss, val_MSEloss = val(val_dataloader,model,criterion,device)
# torch.save(model.state_dict(),".\model.pth")
torch.save(model.state_dict(), f"./model_B/model_epoch{epoch + 1 }_Trainloss{train_MSEloss:.8f}_ValLoss{val_MSEloss:.8f}.pt")
print('Epoch [{}/{}], Train_Loss: {:.8f}, Val_Loss: {:.8f}'.format(epoch + 1, num_epochs , train_loss,val_loss), end=' ')
print('Train_MSE_Loss: {:.8f}, Val_MSE_Loss: {:.8f}'.format(train_MSEloss, val_MSEloss))
def val(dataloader,model,criterion,device):
val_loss = 0
num_batches = len(dataloader)
val_MSEloss = 0
num_sample = 10
model.eval() #重要!设置模式
with torch.no_grad():
for inputs,labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device) #GPU
# # MC sample
# sample_output = torch.zeros(num_sample, labels.shape[0]).to(device)
# for i in range(num_sample):
# sample_output[i] = model(inputs).reshape(-1)
#
# outputs = torch.Tensor(sample_output.mean(dim=0).unsqueeze(1))
outputs = model(inputs)
features = model.features
loss = model.bnn_regression.sample_elbo(features, labels, 1, device)
# outputs = model(inputs)
# features = model.features.to(device)
# loss = model.bnn_regression.sample_elbo(features, labels, 1, device)
MSEloss = criterion(outputs,labels)
val_loss += loss.item()
val_MSEloss += MSEloss.item()
val_loss = val_loss / num_batches
val_MSEloss = val_MSEloss / num_batches
return val_loss, val_MSEloss
def test_plot(dataloader,model,device,criterion):
total_loss = 0.0
num_samples = 0
model.eval()
with torch.no_grad():
predictions = []
true_labels = []
var = []
for test_features, test_labels in dataloader:
outputs, vars = model(test_features.to(device))
loss = criterion(outputs, test_labels.to(device))
total_loss += loss.item() * test_features.size(0)
num_samples += test_features.size(0)
predictions.append(outputs.tolist())
var.append(vars.tolist())
true_labels.append(test_labels.tolist())
average_loss = total_loss / num_samples
print('Validation Loss: {:.8f}'.format(average_loss))
#
# predictions = [(np.array(x) * y_std + y_mean).tolist() for x in predictions]
# true_labels = [(np.array(x) * y_std + y_mean).tolist() for x in true_labels]
x = range(len(sum(predictions, [])))
pred_array = np.array(sum(predictions, [])).flatten()
var_array = np.array(sum(var, [])).flatten()
plt.plot(sum(predictions,[]), label='Predictions')
plt.plot(sum(true_labels,[]), label='True Labels')
plt.fill_between(x, pred_array + var_array, pred_array - var_array, alpha=0.5)
plt.legend()
plt.xlabel('Sample Index')
plt.ylabel('Cycle Capacity')
plt.show()
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
# 设置随机数种子
setup_seed(20)
base_path = r'E:\member\ShiJH\Battery Datasets\SNL_18650_LFP Datasets\modified_dataset'
# csv_files_list = [base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-1C_a_timeseries.csv'),
# # base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-1C_b_timeseries.csv'),
# base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-3C_a_timeseries.csv')]
# train_data = pd.DataFrame()
# cycle_index = 0
# index_max = 0
# for csv_file in csv_files_list:
# df = pd.read_csv(csv_file)
# C_ini = df['cycle capacity'].values[0]
# df['SOH'] = df['cycle capacity'] / C_ini
# index_max = df['Cycle_Index'].max()
# df['Cycle_Index'] = df['Cycle_Index'] + cycle_index
# cycle_index += index_max
# train_data = pd.concat([train_data, df], ignore_index=True)
traindata_path = base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-3C_a_timeseries.csv')
train_data = pd.read_csv(traindata_path)
train_data['SOH'] = train_data['cycle capacity'] / train_data['cycle capacity'].values[0]
# attrib_feature = ['Test_Time','Charge_Capacity','Discharge_Capacity','Voltage','Environment_Temperature','Cell_Temperature']
attrib_feature = ['Current','Voltage','Environment_Temperature','Cell_Temperature','SOC']
attrib_label = ['SOH']
max_len = 200 # 初值100
C_rated = 1.1
C_train = train_data[attrib_label].values[0]
train_dataset = net_BNN.CycleDataset(
data= train_data,
attrib_x=attrib_feature,
attrib_y=attrib_label,
max_len=max_len,
C_rated=C_rated,
mode='train')
min_val, max_val = train_dataset.get_min_max_values()
batch_size = 30
# train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True,
# collate_fn=train_dataset.pad_collate, drop_last=True)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
valdata_path = base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-3C_b_timeseries.csv')
val_data = pd.read_csv(valdata_path)
val_data['SOH'] = val_data['cycle capacity'] / val_data['cycle capacity'].values[0]
# C_val = val_data[attrib_label].values[0]
# scaler_val = train_dataset.scaler
val_dataset = net_BNN.CycleDataset(
data=val_data,
attrib_x=attrib_feature,
attrib_y=attrib_label,
max_len=max_len,
C_rated=C_rated,
min_val=min_val,
max_val=max_val,
mode='val')
# val_dataloader = DataLoader(tar_dataset, batch_size=batch_size,shuffle=False, collate_fn=tar_dataset.pad_collate,drop_last=True)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size,shuffle=False,drop_last=True)
# testdata_path = base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-1C_c_timeseries.csv')
# test_data = pd.read_csv(testdata_path)
# C_test = test_data[attrib_label].values[0]
# test_dataset = net.CycleDataset(test_data, attrib_feature, attrib_label, C_test, max_len, C_rated,
# min_val=min_val, max_val=max_val, mode='test')
# # test_dataloader = DataLoader(test_dataset, batch_size=batch_size,shuffle=False, collate_fn=test_dataset.pad_collate,drop_last=True)
# test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, drop_last=True)
# 初始化Transformer模型
input_dim = len(attrib_feature)
output_dim = 1
hidden_dim = 64
num_layers = 2
num_heads = 4
lr = 1e-4
max_seq_len = 200
# ATBNN_model = net.ATBNN_Model(input_dim, output_dim, hidden_dim, num_layers, num_heads, batch_size, max_seq_len)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# 导入网络结构
ATBNN_model = net_BNN.ATBNN_Model(
input_dim = input_dim,
output_dim = output_dim,
hidden_dim = hidden_dim,
num_layers = num_layers,
num_heads = num_heads,
batch_size = batch_size,
max_seq_len= max_seq_len)
# ATBNN_model.load_state_dict(torch.load("./model_BNN_new/model_epoch185_Trainloss0.01930173_ValLoss0.01682474.pt"))
ATBNN_model.to(device)
optimizer = torch.optim.Adam(ATBNN_model.parameters(), lr=lr)
# optimizer = torch.optim.Adadelta(ATBNN_model.parameters(), lr=1.0, rho=0.9, eps=1e-6, weight_decay=0)
# optimizer = torch.optim.SGD(ATBNN_model.parameters(),lr=lr)
# scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer,gamma=0.9)
criterion = nn.MSELoss(reduction='mean')
num_epochs = 10000
ATBNN_model.to(device)
train(num_epochs, train_dataloader, val_dataloader, ATBNN_model, criterion, optimizer, device)
# test_plot(test_dataloader, ATBNN_model, device, criterion)