File size: 9,103 Bytes
556849d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

import random

import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from torch.utils.data import Dataset, DataLoader

import net_BNN


def train(n_epochs,dataloader,val_dataloader,model,criterion,optimizer,device):

    num_batches = len(dataloader)
    num_sample = 10

    model.train() #重要!设置模式
    for epoch in range(n_epochs):
        total_loss = 0
        total_MSEloss = 0
        for inputs,labels in dataloader:
            inputs,labels = inputs.to(device),labels.to(device) #GPU
            optimizer.zero_grad()

            # MC sample
            # sample_output = torch.zeros(num_sample, labels.shape[0]).to(device)
            # for i in range(num_sample):
            #     sample_output[i] = model(inputs).reshape(-1)
            #
            # outputs = torch.Tensor(sample_output.mean(dim=0).unsqueeze(1))

            outputs = model(inputs)
            features = model.features
            loss = model.bnn_regression.sample_elbo(features, labels, 10, device)


            MSEloss = criterion(outputs,labels)
            loss.backward()
            optimizer.step()
            total_loss += loss.item()
            total_MSEloss += MSEloss.item()

        train_loss = total_loss / num_batches
        train_MSEloss = total_MSEloss / num_batches

        val_loss, val_MSEloss = val(val_dataloader,model,criterion,device)


        # torch.save(model.state_dict(),".\model.pth")
        torch.save(model.state_dict(), f"./model_B/model_epoch{epoch + 1 }_Trainloss{train_MSEloss:.8f}_ValLoss{val_MSEloss:.8f}.pt")
        print('Epoch [{}/{}], Train_Loss: {:.8f}, Val_Loss: {:.8f}'.format(epoch + 1, num_epochs , train_loss,val_loss), end='   ')
        print('Train_MSE_Loss: {:.8f}, Val_MSE_Loss: {:.8f}'.format(train_MSEloss, val_MSEloss))



def val(dataloader,model,criterion,device):
    val_loss = 0
    num_batches = len(dataloader)
    val_MSEloss = 0
    num_sample = 10
    model.eval() #重要!设置模式
    with torch.no_grad():
        for inputs,labels in dataloader:
            inputs = inputs.to(device)
            labels = labels.to(device) #GPU

            # # MC sample
            # sample_output = torch.zeros(num_sample, labels.shape[0]).to(device)
            # for i in range(num_sample):
            #     sample_output[i] = model(inputs).reshape(-1)
            #
            # outputs = torch.Tensor(sample_output.mean(dim=0).unsqueeze(1))
            outputs = model(inputs)
            features = model.features
            loss = model.bnn_regression.sample_elbo(features, labels, 1, device)
            # outputs = model(inputs)
            # features = model.features.to(device)
            # loss = model.bnn_regression.sample_elbo(features, labels, 1, device)
            MSEloss = criterion(outputs,labels)
            val_loss += loss.item()
            val_MSEloss += MSEloss.item()
    val_loss = val_loss / num_batches
    val_MSEloss = val_MSEloss / num_batches

    return val_loss, val_MSEloss


def test_plot(dataloader,model,device,criterion):
    total_loss = 0.0
    num_samples = 0
    model.eval()
    with torch.no_grad():
        predictions = []
        true_labels = []
        var = []
        for test_features, test_labels in dataloader:
            outputs, vars  = model(test_features.to(device))
            loss = criterion(outputs, test_labels.to(device))
            total_loss += loss.item() * test_features.size(0)
            num_samples += test_features.size(0)

            predictions.append(outputs.tolist())
            var.append(vars.tolist())
            true_labels.append(test_labels.tolist())

        average_loss = total_loss / num_samples
        print('Validation Loss: {:.8f}'.format(average_loss))
    #
    # predictions = [(np.array(x) * y_std + y_mean).tolist() for x in predictions]
    # true_labels = [(np.array(x) * y_std + y_mean).tolist() for x in true_labels]
    x = range(len(sum(predictions, [])))

    pred_array = np.array(sum(predictions, [])).flatten()
    var_array = np.array(sum(var, [])).flatten()

    plt.plot(sum(predictions,[]), label='Predictions')

    plt.plot(sum(true_labels,[]), label='True Labels')

    plt.fill_between(x, pred_array + var_array, pred_array - var_array, alpha=0.5)

    plt.legend()
    plt.xlabel('Sample Index')
    plt.ylabel('Cycle Capacity')
    plt.show()



def setup_seed(seed):
   torch.manual_seed(seed)
   torch.cuda.manual_seed_all(seed)
   np.random.seed(seed)
   random.seed(seed)
   torch.backends.cudnn.deterministic = True

# 设置随机数种子
setup_seed(20)

base_path = r'E:\member\ShiJH\Battery Datasets\SNL_18650_LFP Datasets\modified_dataset'
# csv_files_list = [base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-1C_a_timeseries.csv'),
#                   # base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-1C_b_timeseries.csv'),
#                   base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-3C_a_timeseries.csv')]
# train_data = pd.DataFrame()
# cycle_index = 0
# index_max = 0
# for csv_file in csv_files_list:
#         df = pd.read_csv(csv_file)
#         C_ini = df['cycle capacity'].values[0]
#         df['SOH'] = df['cycle capacity'] / C_ini
#         index_max = df['Cycle_Index'].max()
#         df['Cycle_Index'] = df['Cycle_Index'] + cycle_index
#         cycle_index += index_max
#         train_data = pd.concat([train_data, df], ignore_index=True)
traindata_path = base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-3C_a_timeseries.csv')
train_data = pd.read_csv(traindata_path)
train_data['SOH'] = train_data['cycle capacity'] / train_data['cycle capacity'].values[0]

# attrib_feature = ['Test_Time','Charge_Capacity','Discharge_Capacity','Voltage','Environment_Temperature','Cell_Temperature']
attrib_feature = ['Current','Voltage','Environment_Temperature','Cell_Temperature','SOC']
attrib_label = ['SOH']
max_len = 200  # 初值100
C_rated = 1.1
C_train = train_data[attrib_label].values[0]
train_dataset = net_BNN.CycleDataset(
    data= train_data,
    attrib_x=attrib_feature,
    attrib_y=attrib_label,
    max_len=max_len,
    C_rated=C_rated,
    mode='train')
min_val, max_val = train_dataset.get_min_max_values()


batch_size = 30
# train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True,
#                               collate_fn=train_dataset.pad_collate, drop_last=True)

train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)

valdata_path = base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-3C_b_timeseries.csv')
val_data = pd.read_csv(valdata_path)
val_data['SOH'] = val_data['cycle capacity'] / val_data['cycle capacity'].values[0]
# C_val = val_data[attrib_label].values[0]
# scaler_val = train_dataset.scaler
val_dataset = net_BNN.CycleDataset(
    data=val_data,
    attrib_x=attrib_feature,
    attrib_y=attrib_label,
    max_len=max_len,
    C_rated=C_rated,
    min_val=min_val,
    max_val=max_val,
    mode='val')

# val_dataloader = DataLoader(tar_dataset, batch_size=batch_size,shuffle=False, collate_fn=tar_dataset.pad_collate,drop_last=True)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size,shuffle=False,drop_last=True)


# testdata_path = base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-1C_c_timeseries.csv')
# test_data = pd.read_csv(testdata_path)
# C_test = test_data[attrib_label].values[0]
# test_dataset = net.CycleDataset(test_data, attrib_feature, attrib_label, C_test, max_len, C_rated,
#                                 min_val=min_val, max_val=max_val, mode='test')
# # test_dataloader = DataLoader(test_dataset, batch_size=batch_size,shuffle=False, collate_fn=test_dataset.pad_collate,drop_last=True)
# test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, drop_last=True)


# 初始化Transformer模型
input_dim = len(attrib_feature)
output_dim = 1
hidden_dim = 64
num_layers = 2
num_heads = 4
lr = 1e-4
max_seq_len = 200


# ATBNN_model = net.ATBNN_Model(input_dim, output_dim, hidden_dim, num_layers, num_heads, batch_size, max_seq_len)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# 导入网络结构
ATBNN_model = net_BNN.ATBNN_Model(
input_dim = input_dim,
output_dim = output_dim,
hidden_dim = hidden_dim,
num_layers = num_layers,
num_heads = num_heads,
batch_size = batch_size,
max_seq_len= max_seq_len)
# ATBNN_model.load_state_dict(torch.load("./model_BNN_new/model_epoch185_Trainloss0.01930173_ValLoss0.01682474.pt"))
ATBNN_model.to(device)

optimizer = torch.optim.Adam(ATBNN_model.parameters(), lr=lr)
# optimizer = torch.optim.Adadelta(ATBNN_model.parameters(), lr=1.0, rho=0.9, eps=1e-6, weight_decay=0)
# optimizer = torch.optim.SGD(ATBNN_model.parameters(),lr=lr)
# scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer,gamma=0.9)
criterion = nn.MSELoss(reduction='mean')
num_epochs = 10000



ATBNN_model.to(device)
train(num_epochs, train_dataloader, val_dataloader, ATBNN_model, criterion, optimizer, device)
# test_plot(test_dataloader, ATBNN_model, device, criterion)