File size: 4,048 Bytes
556849d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

import pickle

import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt

from torch.utils.data import Dataset, DataLoader

import net_BNN

# 使用已训练的模型进行推理

def test_plot(dataloader,model,device,criterion):
    total_loss = 0.0
    num_samples = 0
    num_sample = 10
    model.eval()
    with torch.no_grad():
        predictions = []
        true_labels = []
        cov = []
        # upp = []
        # low = []

        for test_features, test_labels in dataloader:
            # outputs = model(test_features.to(device))

            # MC sample
            sample_output = torch.zeros(num_sample, test_labels.shape[0]).to(device)
            for i in range(num_sample):
                sample_output[i] = model(test_features.to(device)).reshape(-1)

            outputs = torch.Tensor(sample_output.mean(dim=0).unsqueeze(1)).to(device)
            covs = torch.Tensor(sample_output.std(dim=0).unsqueeze(1)).to(device)

            loss = criterion(outputs, test_labels.to(device))
            total_loss += loss.item() * test_features.size(0)
            num_samples += test_features.size(0)

            predictions.append((outputs).tolist())
            cov.append(covs.tolist())
            true_labels.append((test_labels).tolist())
            # upp.append(np.percentile(sample_output.cpu().detach().numpy() * float(C_test),95).tolist())
            # low.append(np.percentile(sample_output.cpu().detach().numpy() * float(C_test),5).tolist())

        average_loss = total_loss / num_samples
        print('Validation Loss: {:.8f}'.format(average_loss))
    #

    x = range(len(sum(predictions, [])))

    pred_array = np.array(sum(predictions, [])).flatten()
    var_array = np.array(sum(cov, [])).flatten()

    plt.plot(sum(predictions,[]), label='Predictions')

    plt.plot(sum(true_labels,[]), label='True Labels')
    # plt.fill_between(x, upp, low, alpha=0.5, label='Confidence Interval')
    plt.fill_between(x, pred_array + var_array, pred_array - var_array, alpha=0.5, label='Confidence Interval')

    plt.legend()
    plt.xlabel('Sample Index')
    plt.ylabel('Cycle Capacity/Ah')
    plt.show()

#
base_path = r'E:\member\ShiJH\Battery Datasets\SNL_18650_LFP Datasets\modified_dataset'
attrib_feature = ['Current','Voltage','Environment_Temperature','Cell_Temperature','SOC']
attrib_label = ['SOH']

with open('./min_max_values.pkl', 'rb') as f:
    min_val, max_val = pickle.load(f)

max_len = 200
input_dim = len(attrib_feature)
output_dim = 1
hidden_dim = 64
num_layers = 2
num_heads = 4
lr = 1e-3
max_seq_len = 200
batch_size = 5
C_rated = 1.1




testdata_path = base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-3C_b_timeseries.csv')
test_data = pd.read_csv(testdata_path)
test_data['SOH'] = test_data['cycle capacity'] / test_data['cycle capacity'].values[0]
# C_val = val_data[attrib_label].values[0]
# scaler_val = train_dataset.scaler
test_dataset = net_BNN.CycleDataset(
    data=test_data,
    attrib_x=attrib_feature,
    attrib_y=attrib_label,
    max_len=max_len,
    C_rated=C_rated,
    min_val=min_val,
    max_val=max_val,
    mode='test')
test_dataloader = DataLoader(test_dataset, batch_size=batch_size,shuffle=False,drop_last=True)
# 导入网络结构
model = net_BNN.ATBNN_Model(
input_dim = input_dim,
output_dim = output_dim,
hidden_dim = hidden_dim,
num_layers = num_layers,
num_heads = num_heads,
batch_size = batch_size,
max_seq_len= max_seq_len)

# model.load_state_dict(torch.load("./model_B/model_epoch634_Trainloss0.00013560_ValLoss0.00107357.pt"))  #LOSS=0
# model.load_state_dict(torch.load("./model_B/model_epoch2168_Trainloss0.00001729_ValLoss0.00107112.pt"))
model.load_state_dict(torch.load("./model_epoch8876_Trainloss0.00001546_ValLoss0.00022519.pt"))

# model.load_state_dict(torch.load("./model/model_epoch1.pt"))

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model.to(device)
criterion = nn.MSELoss(reduction='mean')


test_plot(test_dataloader,model,device,criterion)