Spaces:
Sleeping
Sleeping
File size: 9,103 Bytes
556849d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import random
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from torch.utils.data import Dataset, DataLoader
import net_BNN
def train(n_epochs,dataloader,val_dataloader,model,criterion,optimizer,device):
num_batches = len(dataloader)
num_sample = 10
model.train() #重要!设置模式
for epoch in range(n_epochs):
total_loss = 0
total_MSEloss = 0
for inputs,labels in dataloader:
inputs,labels = inputs.to(device),labels.to(device) #GPU
optimizer.zero_grad()
# MC sample
# sample_output = torch.zeros(num_sample, labels.shape[0]).to(device)
# for i in range(num_sample):
# sample_output[i] = model(inputs).reshape(-1)
#
# outputs = torch.Tensor(sample_output.mean(dim=0).unsqueeze(1))
outputs = model(inputs)
features = model.features
loss = model.bnn_regression.sample_elbo(features, labels, 10, device)
MSEloss = criterion(outputs,labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
total_MSEloss += MSEloss.item()
train_loss = total_loss / num_batches
train_MSEloss = total_MSEloss / num_batches
val_loss, val_MSEloss = val(val_dataloader,model,criterion,device)
# torch.save(model.state_dict(),".\model.pth")
torch.save(model.state_dict(), f"./model_B/model_epoch{epoch + 1 }_Trainloss{train_MSEloss:.8f}_ValLoss{val_MSEloss:.8f}.pt")
print('Epoch [{}/{}], Train_Loss: {:.8f}, Val_Loss: {:.8f}'.format(epoch + 1, num_epochs , train_loss,val_loss), end=' ')
print('Train_MSE_Loss: {:.8f}, Val_MSE_Loss: {:.8f}'.format(train_MSEloss, val_MSEloss))
def val(dataloader,model,criterion,device):
val_loss = 0
num_batches = len(dataloader)
val_MSEloss = 0
num_sample = 10
model.eval() #重要!设置模式
with torch.no_grad():
for inputs,labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device) #GPU
# # MC sample
# sample_output = torch.zeros(num_sample, labels.shape[0]).to(device)
# for i in range(num_sample):
# sample_output[i] = model(inputs).reshape(-1)
#
# outputs = torch.Tensor(sample_output.mean(dim=0).unsqueeze(1))
outputs = model(inputs)
features = model.features
loss = model.bnn_regression.sample_elbo(features, labels, 1, device)
# outputs = model(inputs)
# features = model.features.to(device)
# loss = model.bnn_regression.sample_elbo(features, labels, 1, device)
MSEloss = criterion(outputs,labels)
val_loss += loss.item()
val_MSEloss += MSEloss.item()
val_loss = val_loss / num_batches
val_MSEloss = val_MSEloss / num_batches
return val_loss, val_MSEloss
def test_plot(dataloader,model,device,criterion):
total_loss = 0.0
num_samples = 0
model.eval()
with torch.no_grad():
predictions = []
true_labels = []
var = []
for test_features, test_labels in dataloader:
outputs, vars = model(test_features.to(device))
loss = criterion(outputs, test_labels.to(device))
total_loss += loss.item() * test_features.size(0)
num_samples += test_features.size(0)
predictions.append(outputs.tolist())
var.append(vars.tolist())
true_labels.append(test_labels.tolist())
average_loss = total_loss / num_samples
print('Validation Loss: {:.8f}'.format(average_loss))
#
# predictions = [(np.array(x) * y_std + y_mean).tolist() for x in predictions]
# true_labels = [(np.array(x) * y_std + y_mean).tolist() for x in true_labels]
x = range(len(sum(predictions, [])))
pred_array = np.array(sum(predictions, [])).flatten()
var_array = np.array(sum(var, [])).flatten()
plt.plot(sum(predictions,[]), label='Predictions')
plt.plot(sum(true_labels,[]), label='True Labels')
plt.fill_between(x, pred_array + var_array, pred_array - var_array, alpha=0.5)
plt.legend()
plt.xlabel('Sample Index')
plt.ylabel('Cycle Capacity')
plt.show()
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
# 设置随机数种子
setup_seed(20)
base_path = r'E:\member\ShiJH\Battery Datasets\SNL_18650_LFP Datasets\modified_dataset'
# csv_files_list = [base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-1C_a_timeseries.csv'),
# # base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-1C_b_timeseries.csv'),
# base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-3C_a_timeseries.csv')]
# train_data = pd.DataFrame()
# cycle_index = 0
# index_max = 0
# for csv_file in csv_files_list:
# df = pd.read_csv(csv_file)
# C_ini = df['cycle capacity'].values[0]
# df['SOH'] = df['cycle capacity'] / C_ini
# index_max = df['Cycle_Index'].max()
# df['Cycle_Index'] = df['Cycle_Index'] + cycle_index
# cycle_index += index_max
# train_data = pd.concat([train_data, df], ignore_index=True)
traindata_path = base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-3C_a_timeseries.csv')
train_data = pd.read_csv(traindata_path)
train_data['SOH'] = train_data['cycle capacity'] / train_data['cycle capacity'].values[0]
# attrib_feature = ['Test_Time','Charge_Capacity','Discharge_Capacity','Voltage','Environment_Temperature','Cell_Temperature']
attrib_feature = ['Current','Voltage','Environment_Temperature','Cell_Temperature','SOC']
attrib_label = ['SOH']
max_len = 200 # 初值100
C_rated = 1.1
C_train = train_data[attrib_label].values[0]
train_dataset = net_BNN.CycleDataset(
data= train_data,
attrib_x=attrib_feature,
attrib_y=attrib_label,
max_len=max_len,
C_rated=C_rated,
mode='train')
min_val, max_val = train_dataset.get_min_max_values()
batch_size = 30
# train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True,
# collate_fn=train_dataset.pad_collate, drop_last=True)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
valdata_path = base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-3C_b_timeseries.csv')
val_data = pd.read_csv(valdata_path)
val_data['SOH'] = val_data['cycle capacity'] / val_data['cycle capacity'].values[0]
# C_val = val_data[attrib_label].values[0]
# scaler_val = train_dataset.scaler
val_dataset = net_BNN.CycleDataset(
data=val_data,
attrib_x=attrib_feature,
attrib_y=attrib_label,
max_len=max_len,
C_rated=C_rated,
min_val=min_val,
max_val=max_val,
mode='val')
# val_dataloader = DataLoader(tar_dataset, batch_size=batch_size,shuffle=False, collate_fn=tar_dataset.pad_collate,drop_last=True)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size,shuffle=False,drop_last=True)
# testdata_path = base_path + str('\modified_SNL_18650_LFP_25C_0-100_0.5-1C_c_timeseries.csv')
# test_data = pd.read_csv(testdata_path)
# C_test = test_data[attrib_label].values[0]
# test_dataset = net.CycleDataset(test_data, attrib_feature, attrib_label, C_test, max_len, C_rated,
# min_val=min_val, max_val=max_val, mode='test')
# # test_dataloader = DataLoader(test_dataset, batch_size=batch_size,shuffle=False, collate_fn=test_dataset.pad_collate,drop_last=True)
# test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, drop_last=True)
# 初始化Transformer模型
input_dim = len(attrib_feature)
output_dim = 1
hidden_dim = 64
num_layers = 2
num_heads = 4
lr = 1e-4
max_seq_len = 200
# ATBNN_model = net.ATBNN_Model(input_dim, output_dim, hidden_dim, num_layers, num_heads, batch_size, max_seq_len)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# 导入网络结构
ATBNN_model = net_BNN.ATBNN_Model(
input_dim = input_dim,
output_dim = output_dim,
hidden_dim = hidden_dim,
num_layers = num_layers,
num_heads = num_heads,
batch_size = batch_size,
max_seq_len= max_seq_len)
# ATBNN_model.load_state_dict(torch.load("./model_BNN_new/model_epoch185_Trainloss0.01930173_ValLoss0.01682474.pt"))
ATBNN_model.to(device)
optimizer = torch.optim.Adam(ATBNN_model.parameters(), lr=lr)
# optimizer = torch.optim.Adadelta(ATBNN_model.parameters(), lr=1.0, rho=0.9, eps=1e-6, weight_decay=0)
# optimizer = torch.optim.SGD(ATBNN_model.parameters(),lr=lr)
# scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer,gamma=0.9)
criterion = nn.MSELoss(reduction='mean')
num_epochs = 10000
ATBNN_model.to(device)
train(num_epochs, train_dataloader, val_dataloader, ATBNN_model, criterion, optimizer, device)
# test_plot(test_dataloader, ATBNN_model, device, criterion) |