Spaces:
Sleeping
Sleeping
File size: 11,433 Bytes
556849d afb4341 556849d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import math
import pickle
import torch
import torch.nn as nn
from torch.distributions import Normal
# import numpy as np
# import pandas as pd
# from matplotlib import pyplot as plt
# from sklearn.preprocessing import StandardScaler,MinMaxScaler
# from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
class CycleDataset(Dataset):
def __init__(self, data, attrib_x, attrib_y, max_len, C_rated, min_val=None, max_val=None, mode='train'):
self.data = data
self.cycle_indices = data['Cycle_Index'].unique()
self.attrib_x = attrib_x
self.attrib_y = attrib_y
self.C_rated = C_rated
self.mode = mode
self.max_len = max_len
self.data['Current'] /= self.C_rated
if mode == 'train':
self.min_val = data[attrib_x].values.min(axis=0)
self.max_val = data[attrib_x].values.max(axis=0)
with open('./para_BNN/min_max_values.pkl', 'wb') as f:
pickle.dump((self.min_val, self.max_val), f)
else:
self.min_val = min_val
self.max_val = max_val
def get_min_max_values(self):
if self.mode != 'train':
return None
return self.min_val, self.max_val
def __len__(self):
return len(self.cycle_indices)
def __getitem__(self, index):
cycle_index = self.cycle_indices[index]
cycle_data = self.data[self.data['Cycle_Index'] == cycle_index].copy()
# cycle_data['Current'] /= self.C_rated
# 提取特征和标签
features = cycle_data[self.attrib_x].values
# C_ini = cycle_data[self.attrib_y].values[0]
label = cycle_data[self.attrib_y].values[0]
# # 标准化特征
features = (features - self.min_val) / (self.max_val - self.min_val)
# label = (label - self.y_mean) / self.y_std
# features = (features - self.min_val) / self.max_val
pad_len = self.max_len - len(features)
features = torch.tensor(features, dtype=torch.float32).clone().detach()
# 在 features 后面填充固定值
features = torch.cat([features, torch.full((pad_len, features.shape[1]), 0)])
# 转换为张量
# features = torch.tensor(padded_features, dtype=torch.float32)
label = torch.tensor(label, dtype=torch.float32)
# label = label.view(1,1)
return features, label
#
# def pad_collate(self, batch):
# # 填充批次数据,使其长度一致
# features_batch, labels_batch = zip(*batch)
# features_batch = pad_sequence(features_batch, batch_first=True)
# labels_batch = torch.stack(labels_batch)
#
# return features_batch, labels_batch
class Transformer_FeatureExtractor(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim, num_layers, num_heads, batch_size, max_seq_len):
super(Transformer_FeatureExtractor, self).__init__()
self.num_layers = num_layers
self.hidden_size = hidden_dim
self.batch_size = batch_size
self.max_seq_len = max_seq_len
# self.cls_token = nn.Parameter(torch.randn(self.batch_size, 1, self.hidden_size))
self.embedding = nn.Linear(input_dim, hidden_dim)
self.position_encoding = self.create_position_encoding()
self.transformer_encoder = nn.TransformerEncoder(
nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=num_heads,dropout=0),
num_layers=num_layers
)
def create_position_encoding(self):
position_encoding = torch.zeros(self.max_seq_len, self.hidden_size)
position = torch.arange(0, self.max_seq_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, self.hidden_size, 2) * (-math.log(10000.0) / self.hidden_size))
position_encoding[:, 0::2] = torch.sin(position * div_term)
position_encoding[:, 1::2] = torch.cos(position * div_term)
position_encoding = position_encoding.unsqueeze(0)
return nn.Parameter(position_encoding, requires_grad=False)
def forward(self, x):
seq_len = x.shape[1]
positions = self.position_encoding[:, :seq_len, :]
x = self.embedding(x)
x = x + positions
# x = torch.cat((x, self.cls_token),dim=1)
# x = torch.cat((self.cls_token, x),dim=1)
x_layer = self.transformer_encoder(x)
feature = torch.mean(x_layer, dim=1)
return feature
# class BaseVaraitionLayer_(nn.Module):
# def __init__(self):
# super().__init__()
# def kl_div(self, mu_q, sigma_q, mu_p, sigma_p):
# '''
# Calculates kl divergence between two guassians (Q || P)
# :param mu_q: torch.Tensor -> mu parameter of distribution Q
# :param sigma_q: torch.Tensor -> sigma parameter of distribution Q
# :param mu_p: float -> mu parameter of distribution P
# :param sigma_p: float -> sigma parameter of distribution P
# :return: torch.Tensor of shape 0
# '''
# kl = torch.log(sigma_p) - torch.log(sigma_q)
# + (sigma_q**2 + (mu_q - mu_p)**2) / (2 * (sigma_p**2)) - 0.5
# return kl.sum()
class BayesLinear(nn.Module):
def __init__(self, input_dim, output_dim, prior_mu, prior_sigma):
super(BayesLinear, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.prior_mu = prior_mu
self.prior_sigma = prior_sigma
self.weight_mu = nn.Parameter(torch.Tensor(output_dim, input_dim))
self.weight_rho = nn.Parameter(torch.Tensor(output_dim, input_dim))
self.bias_mu = nn.Parameter(torch.Tensor(output_dim))
self.bias_rho = nn.Parameter(torch.Tensor(output_dim))
self.weight = None
self.bias = None
self.prior = Normal(prior_mu, prior_sigma)
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_uniform_(self.weight_mu, a=math.sqrt(self.input_dim))
nn.init.constant_(self.weight_rho, -3.0)
nn.init.zeros_(self.bias_mu)
nn.init.constant_(self.bias_rho, -3.0)
def forward(self, input):
weight_epsilon = torch.randn_like(self.weight_mu)
bias_epsilon = torch.randn_like(self.bias_mu)
weight_sigma = torch.log1p(torch.exp(self.weight_rho))
bias_sigma = torch.log1p(torch.exp(self.bias_rho))
self.weight = self.weight_mu + weight_sigma * weight_epsilon
self.bias = self.bias_mu + bias_sigma * bias_epsilon
weight_log_prior = self.prior.log_prob(self.weight)
bias_log_prior = self.prior.log_prob(self.bias)
self.log_prior = torch.sum(weight_log_prior) + torch.sum(bias_log_prior)
self.weight_post = Normal(self.weight_mu.data, torch.log(1 + torch.exp(self.weight_rho)))
self.bias_post = Normal(self.bias_mu.data, torch.log(1 + torch.exp(self.bias_rho)))
self.log_post = self.weight_post.log_prob(self.weight).sum() + self.bias_post.log_prob(self.bias).sum()
# output_mean = torch.matmul(input, weight.t()) + bias
# output_var = torch.matmul(input, weight_sigma.t())**2 + bias_sigma**2
# output_mean = nn.functional.linear(input, self.weight_mu, self.bias_mu)
# output_variance = nn.functional.linear(input ** 2, weight_sigma ** 2, bias_sigma ** 2) + 1e-8
# return output_mean, output_var
return F.linear(input, self.weight, self.bias)
class BNN_Regression(nn.Module):
def __init__(self, input_dim, output_dim, noise_tol):
super(BNN_Regression, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
# self.batch_size = batch_size
self.noise_tol = noise_tol
self.relu = nn.ReLU()
self.tanh = nn.Tanh()
# self.bnn1 = BayesLinear(input_dim=input_dim, output_dim=64, prior_mu=0, prior_sigma=1.)
# self.bnn2 = BayesLinear(input_dim=64, output_dim=32, prior_mu=0, prior_sigma=1.)
# self.fc = BayesLinear(input_dim=16, output_dim=output_dim,prior_mu=0, prior_sigma=1.)
self.bnn = BayesLinear(input_dim=input_dim, output_dim=16, prior_mu=0, prior_sigma=1.)
self.fc = BayesLinear(input_dim=16, output_dim=output_dim, prior_mu=0, prior_sigma=1.)
def forward(self, x):
x = self.bnn(x)
x = self.relu(x)
predictions = self.fc(x)
# x = self.bnn1(x)
# x = self.relu(x)
# x = self.bnn2(x)
# x = self.tanh(x)
# x = self.bnn3(x)
# x = self.relu(x)
# predictions = self.fc(x)
return predictions
def log_prior(self):
# calculate the log prior over all the layers
# return self.bnn1.log_prior + self.bnn2.log_prior + self.bnn3.log_prior + self.fc.log_prior
return self.bnn.log_prior + self.fc.log_prior
def log_post(self):
# calculate the log posterior over all the layers
# return self.bnn1.log_post + self.bnn2.log_post + self.bnn3.log_post + self.fc.log_post
return self.bnn.log_post + self.fc.log_post
def sample_elbo(self, input, target, samples, device):
# we calculate the negative elbo, which will be our loss function
# initialize tensors
outputs = torch.zeros(samples, target.shape[0]).to(device)
log_priors = torch.zeros(samples)
log_posts = torch.zeros(samples)
log_likes = torch.zeros(samples)
# make predictions and calculate prior, posterior, and likelihood for a given number of samples
# 蒙特卡罗近似
for i in range(samples):
outputs[i] = self(input).reshape(-1) # make predictions
log_priors[i] = self.log_prior() # get log prior
log_posts[i] = self.log_post() # get log variational posterior
log_likes[i] = Normal(outputs[i], self.noise_tol).log_prob(target.reshape(-1)).sum() # calculate the log likelihood
# calculate monte carlo estimate of prior posterior and likelihood
log_prior = log_priors.mean()
log_post = log_posts.mean()
log_like = log_likes.mean()
# calculate the negative elbo (which is our loss function)
loss = log_post - log_prior - log_like
return loss
class ATBNN_Model(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim, num_layers, num_heads, batch_size, max_seq_len):
super(ATBNN_Model, self).__init__()
self.feature_extractor = Transformer_FeatureExtractor(input_dim=input_dim,
output_dim=hidden_dim,
hidden_dim=hidden_dim,
num_layers=num_layers,
num_heads=num_heads,
batch_size=batch_size,
max_seq_len=max_seq_len)
self.bnn_regression = BNN_Regression(input_dim=hidden_dim,
output_dim=output_dim,
noise_tol=0.01)
def forward(self, x):
self.features = self.feature_extractor(x)
predictions = self.bnn_regression(self.features)
return predictions |