Spaces:
Sleeping
Sleeping
import gradio as gr | |
from tifffile import imread | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
from analyse import analyse_paths | |
import numpy as np | |
def process(cell_id, foci_file, traces_file): | |
paths, traces, fig, extracted_peaks = analyse_paths(cell_id, foci_file.name, traces_file.name) | |
extracted_peaks.to_csv('tmp') | |
return paths, [Image.fromarray(im) for im in traces], fig, extracted_peaks, 'tmp' | |
def preview_image(file1): | |
if file1: | |
im = imread(file1.name) | |
print(im.shape) | |
return Image.fromarray(np.max(im, axis=0)) | |
else: | |
return None | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
cellid_input = gr.Textbox(label="Cell ID", placeholder="Image_1") | |
image_input = gr.File(label="Input foci image") | |
image_preview = gr.Image(label="Max projection of foci image") | |
image_input.change(fn=preview_image, inputs=image_input, outputs=image_preview) | |
path_input = gr.File(label="SNT traces file") | |
with gr.Column(): | |
trace_output = gr.Image(label="Overlayed paths") | |
image_output=gr.Gallery(label="Traced paths") | |
plot_output=gr.Plot(label="Foci intensity traces") | |
data_output=gr.DataFrame(label="Detected peak data")#, "Peak 1 pos", "Peak 1 int"]) | |
data_file_output=gr.File(label="Output data file (.csv)") | |
with gr.Row(): | |
greet_btn = gr.Button("Process") | |
greet_btn.click(fn=process, inputs=[cellid_input, image_input, path_input], outputs=[trace_output, image_output, plot_output, data_output, data_file_output], api_name="process") | |
if __name__ == "__main__": | |
demo.launch() | |