import gradio as gr import whisper model = whisper.load_model("base") def inference(audio): result = model.transcribe(audio) print(result["text"]) return result["text"] title="Whisper" description="Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification." css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: black; background: black; } input[type='range'] { accent-color: black; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .prompt h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } """ block = gr.Blocks(css=css) with block: gr.HTML( """ <div style="text-align: center; max-width: 650px; margin: 0 auto;"> <div style=" display: inline-flex; gap: 0.8rem; font-size: 1.75rem; margin-bottom: 10px; margin-left: 220px; justify-content: center; " > <a href="https://github.com/PaddlePaddle/PaddleHub"><img src="https://user-images.githubusercontent.com/22424850/187387422-f6c9ccab-7fda-416e-a24d-7d6084c46f67.jpg" alt="Paddlehub" width="40%"></a> </div> <div style=" display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem; margin-bottom: 10px; justify-content: center; "> <a href="https://github.com/PaddlePaddle/PaddleHub"><h1 style="font-weight: 900; margin-bottom: 7px;"> ERNIE-ViLG Demo </h1></a> </div> <p style="margin-bottom: 10px; font-size: 94%"> ERNIE-ViLG is a state-of-the-art text-to-image model that generates images from Chinese text. </p> <a href="https://github.com/PaddlePaddle/PaddleHub"><img src="https://user-images.githubusercontent.com/22424850/188184795-98605a22-9af2-4106-827b-e58548f8892f.png" alt="star Paddlehub" width="100%"></a> </div> """ ) with gr.Group(): with gr.Box(): with gr.Row().style(mobile_collapse=False, equal_height=True): audio = gr.Audio( label="Input Audio", show_label=False, ).style( border=(True, False, True, True), rounded=(True, False, False, True), container=False, ) btn = gr.Button("Transcribe").style( margin=False, rounded=(False, True, True, False), ) text = gr.Textbox( ).style(height="auto") btn.click(inference, inputs=[audio], outputs=[text]) gr.HTML(''' <div class="footer"> <p>Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> and <a href="https://wenxin.baidu.com" style="text-decoration: underline;" target="_blank">文心大模型</a> - Gradio Demo by 🤗 Hugging Face </p> </div> ''') block.launch()