|
from math import e |
|
import gradio as gr |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from matplotlib.collections import LineCollection |
|
|
|
from sklearn.linear_model import LinearRegression |
|
from sklearn.isotonic import IsotonicRegression |
|
from sklearn.utils import check_random_state |
|
|
|
def visualize_isotonic_regression(n, random_range_min, random_range_max, out_of_bounds): |
|
if random_range_min >= random_range_max: |
|
raise ValueError("Random Value Range (Min) must be less than Random Value Range (Max)") |
|
|
|
x = np.arange(n) |
|
rs = check_random_state(0) |
|
y = rs.randint(random_range_min, random_range_max, size=(n,)) + 50.0 * np.log1p(np.arange(n)) |
|
|
|
ir = IsotonicRegression(out_of_bounds=out_of_bounds if out_of_bounds else "clip") |
|
y_ = ir.fit_transform(x, y) |
|
|
|
lr = LinearRegression() |
|
lr.fit(x[:, np.newaxis], y) |
|
|
|
segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)] |
|
lc = LineCollection(segments, zorder=0) |
|
lc.set_array(np.ones(len(y))) |
|
lc.set_linewidths(np.full(n, 0.5)) |
|
|
|
fig, (ax0, ax1) = plt.subplots(ncols=2, figsize=(12, 6)) |
|
|
|
ax0.plot(x, y, "C0.", markersize=12) |
|
ax0.plot(x, y_, "C1.-", markersize=12) |
|
ax0.plot(x, lr.predict(x[:, np.newaxis]), "C2-") |
|
ax0.add_collection(lc) |
|
ax0.legend(("Training data", "Isotonic fit", "Linear fit"), loc="lower right") |
|
ax0.set_title("Isotonic regression fit on noisy data (n=%d)" % n) |
|
|
|
x_test = np.linspace(np.min(x), np.max(x), 1000) |
|
ax1.plot(x_test, ir.predict(x_test), "C1-") |
|
ax1.plot(ir.X_thresholds_, ir.y_thresholds_, "C1.", markersize=12) |
|
ax1.set_title("Prediction function (%d thresholds)" % len(ir.X_thresholds_)) |
|
|
|
return fig |
|
|
|
parameters = [ |
|
gr.inputs.Slider(10, 100, step=10, default=50, label="Number of data points (n)"), |
|
gr.inputs.Slider(-50, 50, step=1, default=-50, label="Random Value Range (Min)"), |
|
gr.inputs.Slider(-50, 50, step=1, default=50, label="Random Value Range (Max)"), |
|
gr.inputs.Dropdown(["clip", "nan", "raise"], default="clip", label="Out of Bounds Strategy"), |
|
] |
|
|
|
description = "This app presents an illustration of the isotonic regression on generated data (non-linear monotonic trend with homoscedastic uniform noise). The isotonic regression algorithm finds a non-decreasing approximation of a function while minimizing the mean squared error on the training data. The benefit of such a non-parametric model is that it does not assume any shape for the target function besides monotonicity. For comparison a linear regression is also presented. See the original scikit-learn example here: https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_isotonic_regression.html" |
|
|
|
examples = [ |
|
[50, -30, 30, "clip"], |
|
[30, -20, 40, "nan"], |
|
[70, -10, 20, "raise"], |
|
] |
|
|
|
iface = gr.Interface(fn=visualize_isotonic_regression, inputs=parameters, outputs="plot", title="Isotonic Regression Visualization", description=description, examples=examples) |
|
iface.launch() |
|
|