Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
import spaces
|
4 |
-
|
5 |
import io
|
|
|
6 |
from PIL import Image
|
7 |
import subprocess
|
8 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
9 |
-
|
|
|
10 |
model_id = 'J-LAB/Florence-vl3'
|
11 |
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda").eval()
|
12 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
@@ -32,22 +33,35 @@ def run_example(task_prompt, image):
|
|
32 |
)
|
33 |
return parsed_answer
|
34 |
|
|
|
35 |
def process_image(image, task_prompt):
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
if task_prompt == 'Product Caption':
|
38 |
task_prompt = '<MORE_DETAILED_CAPTION>'
|
39 |
elif task_prompt == 'OCR':
|
40 |
task_prompt = '<OCR>'
|
41 |
|
|
|
42 |
results = run_example(task_prompt, image)
|
43 |
|
44 |
-
#
|
45 |
if results and task_prompt in results:
|
46 |
output_text = results[task_prompt]
|
47 |
else:
|
48 |
output_text = ""
|
49 |
|
50 |
-
#
|
51 |
output_text = output_text.replace("\n\n", "<br><br>").replace("\n", "<br>")
|
52 |
|
53 |
return output_text
|
@@ -76,16 +90,14 @@ document.querySelector('button').addEventListener('click', function() {
|
|
76 |
});
|
77 |
"""
|
78 |
|
79 |
-
single_task_list =[
|
80 |
-
'Product Caption', 'OCR'
|
81 |
-
]
|
82 |
|
83 |
with gr.Blocks(css=css) as demo:
|
84 |
gr.Markdown(DESCRIPTION)
|
85 |
with gr.Tab(label="Product Image Select"):
|
86 |
with gr.Row():
|
87 |
with gr.Column():
|
88 |
-
input_img = gr.Image(label="Input Picture")
|
89 |
task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Product Caption")
|
90 |
submit_btn = gr.Button(value="Submit")
|
91 |
with gr.Column():
|
@@ -96,20 +108,30 @@ with gr.Blocks(css=css) as demo:
|
|
96 |
To use this model via API, you can follow the example code below:
|
97 |
|
98 |
```python
|
99 |
-
|
100 |
-
from
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
)
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
```
|
|
|
109 |
""")
|
110 |
|
111 |
submit_btn.click(process_image, [input_img, task_prompt], [output_text])
|
112 |
|
113 |
demo.load(lambda: None, inputs=None, outputs=None, js=js)
|
114 |
|
115 |
-
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
import spaces
|
|
|
4 |
import io
|
5 |
+
import base64 # Adicionando a biblioteca base64 para decodificação
|
6 |
from PIL import Image
|
7 |
import subprocess
|
8 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
9 |
+
|
10 |
+
# Carregando o modelo e o processador
|
11 |
model_id = 'J-LAB/Florence-vl3'
|
12 |
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda").eval()
|
13 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
|
|
33 |
)
|
34 |
return parsed_answer
|
35 |
|
36 |
+
# Função para processar imagens, agora suportando Base64
|
37 |
def process_image(image, task_prompt):
|
38 |
+
# Verifica se a imagem é uma string base64
|
39 |
+
if isinstance(image, str) and image.startswith("data:image"):
|
40 |
+
# Extraindo a parte base64 da string
|
41 |
+
base64_image = image.split(",")[1]
|
42 |
+
# Decodificando a imagem base64
|
43 |
+
image = Image.open(io.BytesIO(base64.b64decode(base64_image)))
|
44 |
+
elif isinstance(image, bytes):
|
45 |
+
image = Image.open(io.BytesIO(image))
|
46 |
+
else:
|
47 |
+
image = Image.fromarray(image) # Convertendo um array NumPy para imagem PIL, se aplicável
|
48 |
+
|
49 |
+
# Mapeando os prompts de tarefas
|
50 |
if task_prompt == 'Product Caption':
|
51 |
task_prompt = '<MORE_DETAILED_CAPTION>'
|
52 |
elif task_prompt == 'OCR':
|
53 |
task_prompt = '<OCR>'
|
54 |
|
55 |
+
# Chamando o exemplo com a imagem processada e o prompt da tarefa
|
56 |
results = run_example(task_prompt, image)
|
57 |
|
58 |
+
# Extraindo o texto gerado a partir dos resultados
|
59 |
if results and task_prompt in results:
|
60 |
output_text = results[task_prompt]
|
61 |
else:
|
62 |
output_text = ""
|
63 |
|
64 |
+
# Convertendo quebras de linha para quebras de linha HTML
|
65 |
output_text = output_text.replace("\n\n", "<br><br>").replace("\n", "<br>")
|
66 |
|
67 |
return output_text
|
|
|
90 |
});
|
91 |
"""
|
92 |
|
93 |
+
single_task_list =[ 'Product Caption', 'OCR' ]
|
|
|
|
|
94 |
|
95 |
with gr.Blocks(css=css) as demo:
|
96 |
gr.Markdown(DESCRIPTION)
|
97 |
with gr.Tab(label="Product Image Select"):
|
98 |
with gr.Row():
|
99 |
with gr.Column():
|
100 |
+
input_img = gr.Image(label="Input Picture", tool="editor", source="upload", type="pil") # Suporte a PIL images
|
101 |
task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Product Caption")
|
102 |
submit_btn = gr.Button(value="Submit")
|
103 |
with gr.Column():
|
|
|
108 |
To use this model via API, you can follow the example code below:
|
109 |
|
110 |
```python
|
111 |
+
import base64
|
112 |
+
from PIL import Image
|
113 |
+
import io
|
114 |
+
import requests
|
115 |
+
|
116 |
+
# Converting image to base64
|
117 |
+
image_path = 'path_to_image.png'
|
118 |
+
with open(image_path, 'rb') as image_file:
|
119 |
+
image_base64 = base64.b64encode(image_file.read()).decode('utf-8')
|
120 |
+
|
121 |
+
# Preparing the payload
|
122 |
+
payload = {
|
123 |
+
"image": f"data:image/png;base64,{image_base64}",
|
124 |
+
"task_prompt": "Product Caption"
|
125 |
+
}
|
126 |
+
|
127 |
+
response = requests.post("http://your-space-url-here", json=payload)
|
128 |
+
print(response.json())
|
129 |
```
|
130 |
+
|
131 |
""")
|
132 |
|
133 |
submit_btn.click(process_image, [input_img, task_prompt], [output_text])
|
134 |
|
135 |
demo.load(lambda: None, inputs=None, outputs=None, js=js)
|
136 |
|
137 |
+
demo.launch(debug=True)
|