import gradio as gr import torch from torchvision import transforms from PIL import Image from model import Generator # Assuming you are using Hammad712's model structure # Load model device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = Generator().to(device) model.load_state_dict(torch.load('generator.pth', map_location=device)) model.eval() # Define preprocessing and postprocessing preprocess = transforms.Compose([ transforms.Resize((256, 256)), transforms.Grayscale(num_output_channels=1), transforms.ToTensor() ]) postprocess = transforms.ToPILImage() def colorize_image(input_image): input_tensor = preprocess(input_image).unsqueeze(0).to(device) with torch.no_grad(): output_tensor = model(input_tensor) output_image = postprocess(output_tensor.squeeze(0).cpu().clamp(0, 1)) return output_image def reset(): return None, None with gr.Blocks() as demo: gr.Markdown("# 🎨 Image Colorization App") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Upload your grayscale image", type="pil") clear_button = gr.Button("🔄 Reset / Clear") download_button = gr.File(label="Download Colorized Image") with gr.Column(): output_image = gr.Image(label="Colorized Image") colorize_btn = gr.Button("✨ Colorize Image") colorize_btn.click( colorize_image, inputs=input_image, outputs=output_image ) clear_button.click( reset, inputs=[], outputs=[input_image, output_image] ) # Allow download after processing def prepare_download(image): if image: path = "colorized_output.png" image.save(path) return path else: return None output_image.change( prepare_download, inputs=output_image, outputs=download_button ) demo.launch()