Spaces:
Runtime error
Runtime error
File size: 7,256 Bytes
ee85d5a 0ade2f2 ee85d5a 0ade2f2 ee85d5a e43fa5c 44d0acb ee85d5a 5dd6f34 8ff0a94 ee85d5a 5bea73e ee85d5a 9f0f392 ee85d5a 930282b ee85d5a e43fa5c 44d0acb e43fa5c e4fd4be e43fa5c 0e71381 ee85d5a 8ff0a94 ee85d5a 5bea73e 5dd6f34 5d506f7 ee85d5a 930282b ee85d5a 5bea73e ee85d5a e43fa5c 44d0acb e43fa5c e4fd4be e43fa5c 0e71381 ee85d5a 8c18340 5bea73e 41b8950 e77bd1a 41b8950 e77bd1a 3ff8406 e43fa5c 4a71a9f e43fa5c ee85d5a ecfd587 5bea73e e406504 3515435 8ff0a94 ee85d5a 5dd6f34 3515435 5bea73e ee85d5a e406504 ee85d5a 8ff0a94 ee85d5a 8c18340 3515435 4399c07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import gradio as gr
from transformers import pipeline
import requests
import json
import edge_tts
from edge_tts import VoicesManager
import asyncio
import random
import tempfile
import os
import inflect
from huggingface_hub import InferenceClient
import re
import time
from streaming_stt_nemo import Model
Female_language_dict = {
'English-Jenny (Female)': 'en-US-JennyNeural',
'English-Ana (Female)': 'en-US-AnaNeural',
'English-Aria (Female)': 'en-US-AriaNeural',
'English-Michelle (Female)': 'en-US-MichelleNeural',
'English (Australia)-Natasha- (Female)': 'en-AU-NatashaNeural',
'English (Canada)-Clara- (Female)': 'en-CA-ClaraNeural',
'English (UK)-Libby- (Female)': 'en-GB-LibbyNeural',
'English (UK)-Maisie- (Female)': 'en-GB-MaisieNeural',
'English (UK)-Sonia- (Female)': 'en-GB-SoniaNeural',
'English (Ireland)-Emily- (Female)': 'en-IE-EmilyNeural',
}
language_code = 'English (UK)-Maisie- (Female)'
default_lang = "en"
engines = { default_lang: Model(default_lang) }
def transcribe(audio):
lang = "en"
model = engines[lang]
text = model.stt_file(audio)[0]
return text
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions1 = "<s>[SYSTEM] Answer as Hermione Granger Famous Harry Potter Assistant, with a female voice and old London slang and accent. remember you are the character and Assistant Hermione Granger, from Harry Potter Books, Keep conversation interesting with magic spells, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Hermione Granger, from the Harry Potter book's. The expectation is that you will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by a human, Real Person and not by an AI-powered assistant. Do Not use * or ** .[USER]"
def model(text):
generate_kwargs = dict(
temperature=0.7,
max_new_tokens=512,
top_p=0.95,
repetition_penalty=1,
do_sample=True,
seed=42,
)
formatted_prompt = system_instructions1 + text + "[Hermione]"
stream = client1.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
return output
async def respond(audio, language_code):
user = transcribe(audio)
reply = model(user)
# Random voice choise from Manager base on locale and gender
#
#voices = await VoicesManager.create()
#voice = voices.find(Gender="Female", Locale="en-GB")
#communicate = edge_tts.Communicate(reply, random.choice(voice)["Name"])
#
# Or the following as one selected Voice for the character.
voice = Female_language_dict.get(language_code, "default_voice")
communicate = edge_tts.Communicate(reply, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions1 = "[SYSTEM] Answer as Hermione Granger Famous Harry Potter Assistant, with a female voice and old London slang and accent. remember you are the character and Assistant Hermione Granger, from Harry Potter Books, Keep conversation interesting with magic spells, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Hermione Granger, from the Harry Potter book's. The expectation is that you will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by a human, Real Person and not by an AI-powered assistant. Do Not use * or **. [USER]"
async def generate1(prompt, language_code):
generate_kwargs = dict(
temperature=0.7,
max_new_tokens=512,
top_p=0.95,
repetition_penalty=1,
do_sample=False,
)
formatted_prompt = system_instructions1 + prompt + "[Hermione]"
stream = client1.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
# Random voice choice from VoiceManager base on locale and gender
#
#voices = await VoicesManager.create()
#voice = voices.find(Gender="Female", Locale="en-GB")
#communicate = edge_tts.Communicate(reply, random.choice(voice)["Name"])
#
# Or the following as one selected voice for the character.
voice = Female_language_dict.get(language_code, "default_voice")
communicate = edge_tts.Communicate(output, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
with gr.Blocks(css="style.css") as demo:
gr.Markdown(""" # <center><img src='https://huggingface.co/spaces/Isidorophp/Magic-with-Hermione-Granger/resolve/main/logo.png' alt='RJP DEV STUDIO logo' style='height:60px;'></center>""")
gr.Markdown(""" # <center><b> Hermione Granger π§ββοΈ β‘πͺ</b></center>
### <center>An Artificial Intelligence Assistant just for YOU:
### <center>Now you can Ask for a spell to Hermione</center>
""")
# Use for the Selection of voice for Hermione
with gr.Row():
language_code = gr.Dropdown(choices=list(Female_language_dict.keys()), label="Select Voice for Hermione")
with gr.Row():
input = gr.Audio(label="Your Voice Chat", type="filepath", interactive=True, sources="microphone", waveform_options=False)
output = gr.Audio(label="Hermione", type="filepath", interactive=False, autoplay=True, elem_classes="audio")
gr.Interface(fn=respond, inputs=[input, language_code], outputs=output, live=False)
with gr.Row():
user_input = gr.Textbox(label="Your Question", value="If there is any spell to encapsulate you as an asset, where Hermione is to everyone's favorite magical trio, it has to be...?")
input_text = gr.Textbox(label="Input Text", elem_id="important")
output_audio = gr.Audio(label="Hermione", type="filepath", interactive=False, autoplay=True, elem_classes="audio")
with gr.Row():
translate_btn = gr.Button("Response")
translate_btn.click(fn=generate1, inputs=[user_input, language_code], outputs=output_audio, api_name="translate")
if __name__ == "__main__":
demo.queue(max_size=200, api_open=False).launch()
|