File size: 6,193 Bytes
ee85d5a 0ade2f2 ee85d5a 0ade2f2 ee85d5a 5d506f7 8ff0a94 ee85d5a 8ff0a94 ee85d5a 0e71381 ee85d5a 8ff0a94 ee85d5a 5d506f7 ee85d5a 8ff0a94 ee85d5a 0ade2f2 0e71381 0ade2f2 0e71381 ee85d5a e4afe69 e77bd1a 5e5785c c491452 ee85d5a e4afe69 8ff0a94 e4afe69 ee85d5a e4afe69 ee85d5a 8ff0a94 ee85d5a e4afe69 ee85d5a 8ff0a94 ee85d5a 8ff0a94 ee85d5a 4399c07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import gradio as gr
from transformers import pipeline
import requests
import json
import edge_tts
from edge_tts import VoicesManager
import asyncio
import random
import tempfile
import os
import inflect
from huggingface_hub import InferenceClient
import re
import time
from streaming_stt_nemo import Model
number_to_word = inflect.engine()
default_lang = "en"
engines = { default_lang: Model(default_lang) }
def transcribe(audio):
lang = "en"
model = engines[lang]
text = model.stt_file(audio)[0]
return text
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions1 = "<s>[SYSTEM] Answer as Dr. Watson Famous Sherlock Holmes Assistant, with a male voice and London slang and accent. remember you are the character and Assistant Dr. Watson, from Sherlock Holmes Novels, Keep conversation short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Dr. Watson, from the Sherlock Holmes Novel's. The expectation is that you will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by a human, Real Person and not by an AI-powered assistant. [USER]"
def model(text):
generate_kwargs = dict(
temperature=0.7,
max_new_tokens=512,
top_p=0.95,
repetition_penalty=1,
do_sample=True,
seed=42,
)
formatted_prompt = system_instructions1 + text + "[WATSON]"
stream = client1.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
return output
def number_to_words(str):
words = str.split(' ')
result = []
for word in words:
if( any(char.isdigit() for char in word) ):
word = number_to_word.number_to_words(word)
result.append(word)
final_result = ' '.join(result).replace('point', '')
return final_result
async def respond(audio):
user = transcribe(audio)
reply = model(user)
reply2 = number_to_words(reply)
voices = await VoicesManager.create()
voice = voices.find(Gender="Male", Locale="en-GB")
communicate = edge_tts.Communicate(reply2, random.choice(voice)["Name"])
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions1 = "[SYSTEM] Answer as Dr. Watson Famous Sherlock Holmes Assistant, with a male voice and London slang and accent. remember you are the character and Assistant Dr. Watson, from Sherlock Holmes Novels, Keep conversation short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Dr. Watson, from the Sherlock Holmes Novel's. The expectation is that you will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by a human, Real Person and not by an AI-powered assistant. [USER]"
async def generate1(prompt):
generate_kwargs = dict(
temperature=0.7,
max_new_tokens=512,
top_p=0.95,
repetition_penalty=1,
do_sample=False,
)
formatted_prompt = system_instructions1 + prompt + "[WATSON]"
stream = client1.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
voices = await VoicesManager.create()
voice = voices.find(Gender="Male", Locale="en-GB")
communicate = edge_tts.Communicate(output, random.choice(voice)["Name"])
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
with gr.Blocks(css="style.css") as demo:
gr.Markdown(""" # <center><img src='https://huggingface.co/spaces/Isidorophp/Talk-to-Dr.Watson/resolve/main/logo.png' alt='RJP DEV STUDIO logo' style='width:120px; height:75px; '></center>""")
gr.Markdown(""" # <center><b> DR. Watson 🤖 🧠 🧬</b></center>
### <center>An Artificial Intelligence Assistant just for YOU:
### <center>Now Talk to - Dr. Watson</center>
""")
with gr.Row():
user_input = gr.Audio(label="Your Voice Chat", type="filepath")
output_audio = gr.Audio(label="WATSON", type="filepath",
interactive=True,
autoplay=True,
elem_classes="microphone")
with gr.Row():
translate_btn = gr.Button("Response")
translate_btn.click(fn=respond, inputs=user_input,
outputs=output_audio, api_name=False)
with gr.Row():
user_input = gr.Textbox(label="Your Question", value="Dr. Watson can you summarize your adventures with Sherlock Holmes?")
input_text = gr.Textbox(label="Input Text", elem_id="important")
output_audio = gr.Audio(label="WATSON", type="filepath",
interactive=False,
autoplay=True,
elem_classes="audio")
with gr.Row():
translate_btn = gr.Button("Response")
translate_btn.click(fn=generate1, inputs=user_input,
outputs=output_audio, api_name="translate")
if __name__ == "__main__":
demo.queue(max_size=200,api_open=False).launch()
|