DataWizardZ / app.py
Ishanpardeshi's picture
Update app.py
6c7d301 verified
raw
history blame
7.71 kB
import os
import pandas as pd
import gradio as gr
from crewai import Agent, Task, Crew
from langchain_openai import ChatOpenAI
from crewai_tools import PDFSearchTool, FileReadTool, DOCXSearchTool, CSVSearchTool
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.agents.agent_types import AgentType
from langchain_experimental.agents.agent_toolkits import create_csv_agent
import asyncio
# API keys-----------------move them to ENV
os.environ["OPENAI_API_KEY"] = "NA"
os.environ["GOOGLE_API_KEY"] = "AIzaSyD7jKc5MdkRLakxcyhvrpie8XgbwY98NMo"
# Load The Gemini model for LLM
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-flash-latest",
verbose=True,
temperature=0.6, # high temp=high accuracy and low creativity
google_api_key="AIzaSyD7jKc5MdkRLakxcyhvrpie8XgbwY98NMo"
)
#<-----------------------------Tools----------------------------------->
class tools:
def pdfRead(path):
PDFtool = PDFSearchTool(
config=dict(
llm=dict(
provider="google",
config=dict(
model="gemini-1.5-flash-latest",
),
),
embedder=dict(
provider="huggingface",
config=dict(
model="sentence-transformers/msmarco-distilbert-base-v4"
),
),
),
pdf=path
)
return PDFtool
def fileRead(path):
Filetool = FileReadTool(
config=dict(
llm=dict(
provider="google",
config=dict(
model="gemini-1.5-flash-latest",
),
),
embedder=dict(
provider="huggingface",
config=dict(
model="sentence-transformers/msmarco-distilbert-base-v4"
),
),
),
file_path=path
)
return Filetool
def docsRead(path):
Docstool = DOCXSearchTool(
config=dict(
llm=dict(
provider="google",
config=dict(
model="gemini-1.5-flash-latest",
),
),
embedder=dict(
provider="huggingface",
config=dict(
model="sentence-transformers/msmarco-distilbert-base-v4"
),
),
),
docx=path
)
return Docstool
#<-----------------------------Tools----------------------------------->
#<------------------------------Agents START------------------------->
class AgentLoader:
async def csvReaderAgent(path):
agent = create_csv_agent(
ChatGoogleGenerativeAI(temperature=0.6, model="gemini-1.5-flash-latest"),
path,
verbose=True,
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION
)
return agent
async def fileReaderAgent(path):
FileReader = Agent(
role='File searcher',
goal='To analyse and generate optimal and reliable results',
backstory="""You are a File specialist and can handle multiple file formats like .txt, .csv, .json etc.
You are responsible to analyse the file to find the relevant content that solves the problem of the user and generate high quality and reliable results.
You should also provide the results of your analysis and searching.""",
llm=llm,
verbose=True,
tools=[tools.fileRead(path)],
allow_delegation=False
)
return FileReader
async def PdfReaderAgent(path):
PdfReader = Agent(
role='PDF searcher',
goal='To analyse and generate optimal and reliable results',
backstory="""You are a PDF specialist and content writer.
You are responsible to analyse the pdf to find the relevant content that solves the problem of the user and generate high quality and reliable results.
You should also provide the results of your analysis and searching.""",
llm=llm,
verbose=True,
tools=[tools.pdfRead(path)],
allow_delegation=False
)
return PdfReader
async def DocsReaderAgent(path):
DocsReader = Agent(
role='Docs searcher',
goal='To analyse and generate optimal and reliable results',
backstory="""You are a Docs specialist and content writer.
You are responsible to analyse the pdf to find the relevant content that solves the problem of the user and generate high quality and reliable results.
You should also provide the results of your analysis and searching.""",
llm=llm,
verbose=True,
tools=[tools.docsRead(path)],
allow_delegation=False
)
return DocsReader
async def writerAgent():
writer = Agent(
role='Content Writer',
goal='To produce higly accurate and easy to understand information',
backstory="""You are a content specialist and are responsible to generate reliable and easy to understand content or information based on the summary of data.
You should provide indetail results on the summary data.""",
verbose=True,
llm=llm
)
return writer
#<------------------------------Agents END------------------------->
#<-------------------------------Tasks---------------------------->
async def getTasks(query, agent, exp):
task_read = Task(
description=f'{query}',
agent=agent,
expected_output=f'A detailed information on {query}'
)
writer_agent = await AgentLoader.writerAgent()
task_write = Task(
description=f'{query}',
agent=writer_agent,
expected_output=exp
)
return [task_read, task_write]
# Gradio interface function
def process_file(file, query, expected_output):
path = file.name
async def process_async():
if path.endswith(".pdf"):
agent = await AgentLoader.PdfReaderAgent(path)
elif path.endswith(".docx"):
agent = await AgentLoader.DocsReaderAgent(path)
elif path.endswith(".json") or path.endswith(".txt"):
agent = await AgentLoader.fileReaderAgent(path)
elif path.endswith(".csv"):
agent = await AgentLoader.csvReaderAgent(path)
results = agent.run(query)
return results
else:
return 'File NOT supported'
tasks = await getTasks(query, agent, expected_output)
mycrew = Crew(
agents=[agent, await AgentLoader.writerAgent()],
tasks=tasks,
verbose=True
)
results = mycrew.kickoff()
return results
loop = asyncio.get_event_loop()
return loop.run_until_complete(process_async())
# Create the Gradio interface
interface = gr.Interface(
fn=process_file,
inputs=[
gr.File(label="Upload File"),
gr.Textbox(label="Query"),
gr.Textbox(label="Expected Output")
],
outputs="text",
title="File Analyzer",
description="Upload a file (CSV, PDF, DOCX, TXT, JSON) and enter your query to get detailed information."
)
# Launch the Gradio interface
interface.launch()