from transformers import ViTForImageClassification from PIL import Image import torch import gradio as gr from transformers import pipeline device = 0 if torch.cuda.is_available() else -1 # Loading in Model model_name = "dima806/ai_vs_real_image_detection" pipe = pipeline("image-classification", model=model_name, device = device) # Classification function def classify_image(img: Image.Image): results = pipe(img) top = results[0] label = top["label"] score = top["score"] return f"Prediction: {label} (Confidence: {score:.2f})" # Gradio interface interface = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil"), outputs="text", title="Real vs AI Image Detection", description="Upload an image to see if it's REAL or AI-generated." ) interface.launch()