from transformers import ViTForImageClassification from PIL import Image import torch import gradio as gr from transformers import pipeline device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Loading in Model model_name = "dima806/ai_vs_real_image_detection" model = ViTForImageClassification.from_pretrained(model_name).to(device) model.to(device) #Classification function def classify_image(img: Image.Image): inputs = model(images=img, return_tensors="pt").to(device) results = model(inputs) top = results[0] label = top["label"] score = top["score"] return f"Prediction: {label} (Confidence: {score:.2f})" # Interface interface = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil"), outputs="text", title="Real vs AI Image detection", description="Check if your image is Real or AI" )