Update index.html
Browse files- index.html +73 -75
index.html
CHANGED
@@ -37,7 +37,26 @@
|
|
37 |
</ul>
|
38 |
|
39 |
<!-- Task Description -->
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
<p>
|
42 |
The Iqra’Eval shared task focuses on automatic mispronunciation detection and diagnosis in Qur’anic recitation. Given:
|
43 |
</p>
|
@@ -59,10 +78,10 @@
|
|
59 |
<li>Detect substitutions (e.g., pronouncing /q/ as /k/), deletions (e.g., dropping a hamza), or insertions (e.g., adding an extra vowel) of phonemes.</li>
|
60 |
<li>Localize the error to a specific phoneme index in the utterance.</li>
|
61 |
<li>Classify what type of mistake occurred based on Tajweed (e.g., madd errors, ikhfa, idgham, etc.).</li>
|
62 |
-
</ul>
|
63 |
|
64 |
<!-- Example & Illustration -->
|
65 |
-
<h2>Example</h2>
|
66 |
<p>
|
67 |
Suppose the reference verse (fully vowelized) is:
|
68 |
</p>
|
@@ -95,62 +114,9 @@ inna l l aa h a ʕ a l a k u l l i ʃ a y ’ i n q a d i r u n
|
|
95 |
<p style="font-size: 0.9em; color: #555;">
|
96 |
<em>Figure: Example of a phoneme-level comparison between reference vs. predicted for an Arabic Qur’anic recitation.</em>
|
97 |
</p>
|
98 |
-
</div>
|
99 |
|
100 |
<!-- Evaluation Criteria -->
|
101 |
-
<h2>Evaluation Criteria</h2>
|
102 |
-
<p>
|
103 |
-
Systems will be scored on their ability to detect and correctly classify phoneme-level errors:
|
104 |
-
</p>
|
105 |
-
<ul>
|
106 |
-
<li><strong>Detection accuracy:</strong> Did the system spot that a phoneme-level error occurred in the segment?</li>
|
107 |
-
<li><strong>Localization precision:</strong> Did the system mark the correct positions (indices) in the phoneme sequence where the error(s) occurred?</li>
|
108 |
-
<li><strong>Classification F1-score:</strong> Given that an error is detected at a particular position, did the system assign the correct error type (e.g., substitution vs. insertion vs. deletion, plus the specific Tajweed subcategory)?</li>
|
109 |
-
</ul>
|
110 |
-
<p>
|
111 |
-
A final <strong>Composite Error Score (CES)</strong> will be computed by combining:
|
112 |
-
</p>
|
113 |
-
<ol>
|
114 |
-
<li>Boundary-aware detection accuracy (punish off-by-one index errors lightly),</li>
|
115 |
-
<li>Per-error-type classification F1-score (substitution, deletion, insertion), and</li>
|
116 |
-
<li>Overall phoneme-sequence alignment score (Levenshtein-based alignment to reward correct sequences).
|
117 |
-
<!-- Note: Detailed weightings will be released along with the test data. -->
|
118 |
-
</li>
|
119 |
-
</ol>
|
120 |
-
<p>
|
121 |
-
<em>(Detailed evaluation weights and scripts will be made available on June 5, 2025.)</em>
|
122 |
-
</p>
|
123 |
-
|
124 |
-
<!-- Submission Details -->
|
125 |
-
<h2>Submission Details (Draft)</h2>
|
126 |
-
<p>
|
127 |
-
Participants are required to submit a CSV file named <code>submission.csv</code> containing the predicted phoneme sequences for each audio sample. The file must have exactly two columns:
|
128 |
-
</p>
|
129 |
-
<ul>
|
130 |
-
<li><strong>ID:</strong> Unique identifier of the audio sample.</li>
|
131 |
-
<li><strong>Labels:</strong> The predicted phoneme sequence, with each phoneme separated by a single space.</li>
|
132 |
-
</ul>
|
133 |
-
<p>
|
134 |
-
Below is a minimal example illustrating the required format:
|
135 |
-
</p>
|
136 |
-
<pre>
|
137 |
-
ID,Labels
|
138 |
-
0000_0001, i n n a m a a y a k h a l l a h a m i n ʕ i b a a d i h u l ʕ u l a m
|
139 |
-
0000_0002, m a a n a n s a k h u m i n i ʕ a a y a t i n
|
140 |
-
0000_0003, y u k h i k u m u n n u ʔ a u ʔ a m a n a t a n m m i n h u
|
141 |
-
…
|
142 |
-
</pre>
|
143 |
-
<p>
|
144 |
-
The first column (ID) should match exactly the audio filenames (without extension). The second column (Labels) is the predicted phoneme string.
|
145 |
-
</p>
|
146 |
-
<p>
|
147 |
-
<strong>Important:</strong>
|
148 |
-
<ul>
|
149 |
-
<li>Use UTF-8 encoding.</li>
|
150 |
-
<li>Do not include extra spaces at the start or end of each line.</li>
|
151 |
-
<li>Submit a single CSV file (no archives). Filename must be <code>submission.csv</code>.</li>
|
152 |
-
</ul>
|
153 |
-
</p>
|
154 |
|
155 |
<!-- Dataset Description -->
|
156 |
<h2>Dataset Description</h2>
|
@@ -161,24 +127,21 @@ ID,Labels
|
|
161 |
<li>
|
162 |
<strong>Training set:</strong> 79 hours of Modern Standard Arabic (MSA) speech, augmented with multiple Qur’anic recitations.
|
163 |
<br />
|
164 |
-
<code>df = load_dataset("
|
165 |
</li>
|
166 |
<li>
|
167 |
-
<strong>Development set
|
168 |
<br />
|
169 |
-
<code>df = load_dataset("
|
170 |
</li>
|
171 |
</ul>
|
172 |
-
<p>
|
173 |
-
A sample submission file (<code>sample_submission.csv</code>) is also provided in the repository.
|
174 |
-
</p>
|
175 |
<p>
|
176 |
<strong>Column Definitions:</strong>
|
177 |
</p>
|
178 |
<ul>
|
|
|
179 |
<li><code>sentence</code>: Original sentence text (may be partially diacritized or non-diacritized).</li>
|
180 |
-
<li><code>
|
181 |
-
<li><code>start_word_index</code>, <code>end_word_index</code>: Word positions within the verse (or <code>-1</code> if non-Quranic).</li>
|
182 |
<li><code>tashkeel_sentence</code>: Fully diacritized sentence (auto-generated via a diacritization tool).</li>
|
183 |
<li><code>phoneme</code>: Phoneme sequence corresponding to the diacritized sentence (Nawar Halabi phonetizer).</li>
|
184 |
</ul>
|
@@ -195,23 +158,15 @@ ID,Labels
|
|
195 |
We also provide a high-quality TTS corpus for auxiliary experiments (e.g., data augmentation, synthetic pronunciation error simulation). This TTS set can be loaded via:
|
196 |
</p>
|
197 |
<ul>
|
198 |
-
<li><code>df_tts = load_dataset("IqraEval/Iqra_TTS"
|
199 |
</ul>
|
200 |
-
<p>
|
201 |
-
Researchers who wish to experiment with “synthetic mispronunciations” can use the TTS waveform + forced-alignment pipeline to generate various kinds of pronunciation errors in a controlled manner.
|
202 |
-
</p>
|
203 |
|
204 |
<!-- Resources & Links -->
|
205 |
<h2>Resources</h2>
|
206 |
<ul>
|
207 |
-
<li>
|
208 |
-
<a href="https://huggingface.co/datasets/mostafaashahin/IqraEval_Training_Data" target="_blank">
|
209 |
-
Training & Development Data on Hugging Face
|
210 |
-
</a>
|
211 |
-
</li>
|
212 |
<li>
|
213 |
<a href="https://huggingface.co/datasets/IqraEval/Iqra_train" target="_blank">
|
214 |
-
|
215 |
</a>
|
216 |
</li>
|
217 |
<li>
|
@@ -231,6 +186,49 @@ ID,Labels
|
|
231 |
</em>
|
232 |
</p>
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
<!-- Placeholder for Future Details -->
|
235 |
<h2>Future Updates</h2>
|
236 |
<p>
|
|
|
37 |
</ul>
|
38 |
|
39 |
<!-- Task Description -->
|
40 |
+
|
41 |
+
<h2>🔊 Task Description</h2>
|
42 |
+
<p>
|
43 |
+
The Iqra'Eval task focuses on <strong>automatic pronunciation assessment</strong> in Qur’anic context.
|
44 |
+
Given a spoken audio clip of a verse and its fully vowelized reference text, your system should predict
|
45 |
+
the <strong>correct phoneme sequence</strong> actually spoken by the reciter.
|
46 |
+
</p>
|
47 |
+
<p>
|
48 |
+
By comparing this predicted sequence to the reference text and the gold phoneme sequence annotation, we can automatically detect pronunciation issues, such as:
|
49 |
+
</p>
|
50 |
+
<ul>
|
51 |
+
<li><strong>Substitutions</strong>: e.g., saying /k/ instead of /q/</li>
|
52 |
+
<li><strong>Insertions</strong>: adding a sound not present in the reference</li>
|
53 |
+
<li><strong>Deletions</strong>: skipping a required phoneme</li>
|
54 |
+
</ul>
|
55 |
+
<p>
|
56 |
+
This task helps diagnose and localize pronunciation errors, enabling educational feedback in applications like Qur’anic tutoring or speech evaluation tools.
|
57 |
+
</p>
|
58 |
+
|
59 |
+
<!-- <h2>Task Description</h2>
|
60 |
<p>
|
61 |
The Iqra’Eval shared task focuses on automatic mispronunciation detection and diagnosis in Qur’anic recitation. Given:
|
62 |
</p>
|
|
|
78 |
<li>Detect substitutions (e.g., pronouncing /q/ as /k/), deletions (e.g., dropping a hamza), or insertions (e.g., adding an extra vowel) of phonemes.</li>
|
79 |
<li>Localize the error to a specific phoneme index in the utterance.</li>
|
80 |
<li>Classify what type of mistake occurred based on Tajweed (e.g., madd errors, ikhfa, idgham, etc.).</li>
|
81 |
+
</ul> -->
|
82 |
|
83 |
<!-- Example & Illustration -->
|
84 |
+
<!-- <h2>Example</h2>
|
85 |
<p>
|
86 |
Suppose the reference verse (fully vowelized) is:
|
87 |
</p>
|
|
|
114 |
<p style="font-size: 0.9em; color: #555;">
|
115 |
<em>Figure: Example of a phoneme-level comparison between reference vs. predicted for an Arabic Qur’anic recitation.</em>
|
116 |
</p>
|
117 |
+
</div> -->
|
118 |
|
119 |
<!-- Evaluation Criteria -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
<!-- Dataset Description -->
|
122 |
<h2>Dataset Description</h2>
|
|
|
127 |
<li>
|
128 |
<strong>Training set:</strong> 79 hours of Modern Standard Arabic (MSA) speech, augmented with multiple Qur’anic recitations.
|
129 |
<br />
|
130 |
+
<code>df = load_dataset("IqraEval/Iqra_train", split="train")</code>
|
131 |
</li>
|
132 |
<li>
|
133 |
+
<strong>Development set:</strong> 3.4 hours reserved for tuning and validation.
|
134 |
<br />
|
135 |
+
<code>df = load_dataset("IqraEval/Iqra_train", split="dev")</code>
|
136 |
</li>
|
137 |
</ul>
|
|
|
|
|
|
|
138 |
<p>
|
139 |
<strong>Column Definitions:</strong>
|
140 |
</p>
|
141 |
<ul>
|
142 |
+
<li><code>audio</code>: Speech Array.</li>
|
143 |
<li><code>sentence</code>: Original sentence text (may be partially diacritized or non-diacritized).</li>
|
144 |
+
<li><code>index</code>: If from the Quran, the verse index (0–6265, including Basmalah); otherwise <code>-1</code>.</li>
|
|
|
145 |
<li><code>tashkeel_sentence</code>: Fully diacritized sentence (auto-generated via a diacritization tool).</li>
|
146 |
<li><code>phoneme</code>: Phoneme sequence corresponding to the diacritized sentence (Nawar Halabi phonetizer).</li>
|
147 |
</ul>
|
|
|
158 |
We also provide a high-quality TTS corpus for auxiliary experiments (e.g., data augmentation, synthetic pronunciation error simulation). This TTS set can be loaded via:
|
159 |
</p>
|
160 |
<ul>
|
161 |
+
<li><code>df_tts = load_dataset("IqraEval/Iqra_TTS")</code></li>
|
162 |
</ul>
|
|
|
|
|
|
|
163 |
|
164 |
<!-- Resources & Links -->
|
165 |
<h2>Resources</h2>
|
166 |
<ul>
|
|
|
|
|
|
|
|
|
|
|
167 |
<li>
|
168 |
<a href="https://huggingface.co/datasets/IqraEval/Iqra_train" target="_blank">
|
169 |
+
Training & Development Data on Hugging Face
|
170 |
</a>
|
171 |
</li>
|
172 |
<li>
|
|
|
186 |
</em>
|
187 |
</p>
|
188 |
|
189 |
+
<h2>Evaluation Criteria</h2>
|
190 |
+
<p>
|
191 |
+
Systems will be scored on their ability to detect and correctly classify phoneme-level errors:
|
192 |
+
</p>
|
193 |
+
<ul>
|
194 |
+
<li><strong>Detection accuracy:</strong> Did the system spot that a phoneme-level error occurred in the segment?</li>
|
195 |
+
<li><strong>Classification F1-score:</strong> Mispronunciation Detection F1-score</li>
|
196 |
+
</ul>
|
197 |
+
<p>
|
198 |
+
<em>(Detailed evaluation weights and scripts will be made available on June 5, 2025.)</em>
|
199 |
+
</p>
|
200 |
+
|
201 |
+
<!-- Submission Details -->
|
202 |
+
<h2>Submission Details (Draft)</h2>
|
203 |
+
<p>
|
204 |
+
Participants are required to submit a CSV file named <code>submission.csv</code> containing the predicted phoneme sequences for each audio sample. The file must have exactly two columns:
|
205 |
+
</p>
|
206 |
+
<ul>
|
207 |
+
<li><strong>ID:</strong> Unique identifier of the audio sample.</li>
|
208 |
+
<li><strong>Labels:</strong> The predicted phoneme sequence, with each phoneme separated by a single space.</li>
|
209 |
+
</ul>
|
210 |
+
<p>
|
211 |
+
Below is a minimal example illustrating the required format:
|
212 |
+
</p>
|
213 |
+
<pre>
|
214 |
+
ID,Labels
|
215 |
+
0000_0001, i n n a m a a y a k h a l l a h a m i n ʕ i b a a d i h u l ʕ u l a m
|
216 |
+
0000_0002, m a a n a n s a k h u m i n i ʕ a a y a t i n
|
217 |
+
0000_0003, y u k h i k u m u n n u ʔ a u ʔ a m a n a t a n m m i n h u
|
218 |
+
…
|
219 |
+
</pre>
|
220 |
+
<p>
|
221 |
+
The first column (ID) should match exactly the audio filenames (without extension). The second column (Labels) is the predicted phoneme string.
|
222 |
+
</p>
|
223 |
+
<p>
|
224 |
+
<strong>Important:</strong>
|
225 |
+
<ul>
|
226 |
+
<li>Use UTF-8 encoding.</li>
|
227 |
+
<li>Do not include extra spaces at the start or end of each line.</li>
|
228 |
+
<li>Submit a single CSV file (no archives). Filename must be <code>submission.csv</code>.</li>
|
229 |
+
</ul>
|
230 |
+
</p>
|
231 |
+
|
232 |
<!-- Placeholder for Future Details -->
|
233 |
<h2>Future Updates</h2>
|
234 |
<p>
|