Update index.html
Browse files- index.html +73 -75
index.html
CHANGED
|
@@ -37,7 +37,26 @@
|
|
| 37 |
</ul>
|
| 38 |
|
| 39 |
<!-- Task Description -->
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
<p>
|
| 42 |
The Iqra’Eval shared task focuses on automatic mispronunciation detection and diagnosis in Qur’anic recitation. Given:
|
| 43 |
</p>
|
|
@@ -59,10 +78,10 @@
|
|
| 59 |
<li>Detect substitutions (e.g., pronouncing /q/ as /k/), deletions (e.g., dropping a hamza), or insertions (e.g., adding an extra vowel) of phonemes.</li>
|
| 60 |
<li>Localize the error to a specific phoneme index in the utterance.</li>
|
| 61 |
<li>Classify what type of mistake occurred based on Tajweed (e.g., madd errors, ikhfa, idgham, etc.).</li>
|
| 62 |
-
</ul>
|
| 63 |
|
| 64 |
<!-- Example & Illustration -->
|
| 65 |
-
<h2>Example</h2>
|
| 66 |
<p>
|
| 67 |
Suppose the reference verse (fully vowelized) is:
|
| 68 |
</p>
|
|
@@ -95,62 +114,9 @@ inna l l aa h a ʕ a l a k u l l i ʃ a y ’ i n q a d i r u n
|
|
| 95 |
<p style="font-size: 0.9em; color: #555;">
|
| 96 |
<em>Figure: Example of a phoneme-level comparison between reference vs. predicted for an Arabic Qur’anic recitation.</em>
|
| 97 |
</p>
|
| 98 |
-
</div>
|
| 99 |
|
| 100 |
<!-- Evaluation Criteria -->
|
| 101 |
-
<h2>Evaluation Criteria</h2>
|
| 102 |
-
<p>
|
| 103 |
-
Systems will be scored on their ability to detect and correctly classify phoneme-level errors:
|
| 104 |
-
</p>
|
| 105 |
-
<ul>
|
| 106 |
-
<li><strong>Detection accuracy:</strong> Did the system spot that a phoneme-level error occurred in the segment?</li>
|
| 107 |
-
<li><strong>Localization precision:</strong> Did the system mark the correct positions (indices) in the phoneme sequence where the error(s) occurred?</li>
|
| 108 |
-
<li><strong>Classification F1-score:</strong> Given that an error is detected at a particular position, did the system assign the correct error type (e.g., substitution vs. insertion vs. deletion, plus the specific Tajweed subcategory)?</li>
|
| 109 |
-
</ul>
|
| 110 |
-
<p>
|
| 111 |
-
A final <strong>Composite Error Score (CES)</strong> will be computed by combining:
|
| 112 |
-
</p>
|
| 113 |
-
<ol>
|
| 114 |
-
<li>Boundary-aware detection accuracy (punish off-by-one index errors lightly),</li>
|
| 115 |
-
<li>Per-error-type classification F1-score (substitution, deletion, insertion), and</li>
|
| 116 |
-
<li>Overall phoneme-sequence alignment score (Levenshtein-based alignment to reward correct sequences).
|
| 117 |
-
<!-- Note: Detailed weightings will be released along with the test data. -->
|
| 118 |
-
</li>
|
| 119 |
-
</ol>
|
| 120 |
-
<p>
|
| 121 |
-
<em>(Detailed evaluation weights and scripts will be made available on June 5, 2025.)</em>
|
| 122 |
-
</p>
|
| 123 |
-
|
| 124 |
-
<!-- Submission Details -->
|
| 125 |
-
<h2>Submission Details (Draft)</h2>
|
| 126 |
-
<p>
|
| 127 |
-
Participants are required to submit a CSV file named <code>submission.csv</code> containing the predicted phoneme sequences for each audio sample. The file must have exactly two columns:
|
| 128 |
-
</p>
|
| 129 |
-
<ul>
|
| 130 |
-
<li><strong>ID:</strong> Unique identifier of the audio sample.</li>
|
| 131 |
-
<li><strong>Labels:</strong> The predicted phoneme sequence, with each phoneme separated by a single space.</li>
|
| 132 |
-
</ul>
|
| 133 |
-
<p>
|
| 134 |
-
Below is a minimal example illustrating the required format:
|
| 135 |
-
</p>
|
| 136 |
-
<pre>
|
| 137 |
-
ID,Labels
|
| 138 |
-
0000_0001, i n n a m a a y a k h a l l a h a m i n ʕ i b a a d i h u l ʕ u l a m
|
| 139 |
-
0000_0002, m a a n a n s a k h u m i n i ʕ a a y a t i n
|
| 140 |
-
0000_0003, y u k h i k u m u n n u ʔ a u ʔ a m a n a t a n m m i n h u
|
| 141 |
-
…
|
| 142 |
-
</pre>
|
| 143 |
-
<p>
|
| 144 |
-
The first column (ID) should match exactly the audio filenames (without extension). The second column (Labels) is the predicted phoneme string.
|
| 145 |
-
</p>
|
| 146 |
-
<p>
|
| 147 |
-
<strong>Important:</strong>
|
| 148 |
-
<ul>
|
| 149 |
-
<li>Use UTF-8 encoding.</li>
|
| 150 |
-
<li>Do not include extra spaces at the start or end of each line.</li>
|
| 151 |
-
<li>Submit a single CSV file (no archives). Filename must be <code>submission.csv</code>.</li>
|
| 152 |
-
</ul>
|
| 153 |
-
</p>
|
| 154 |
|
| 155 |
<!-- Dataset Description -->
|
| 156 |
<h2>Dataset Description</h2>
|
|
@@ -161,24 +127,21 @@ ID,Labels
|
|
| 161 |
<li>
|
| 162 |
<strong>Training set:</strong> 79 hours of Modern Standard Arabic (MSA) speech, augmented with multiple Qur’anic recitations.
|
| 163 |
<br />
|
| 164 |
-
<code>df = load_dataset("
|
| 165 |
</li>
|
| 166 |
<li>
|
| 167 |
-
<strong>Development set
|
| 168 |
<br />
|
| 169 |
-
<code>df = load_dataset("
|
| 170 |
</li>
|
| 171 |
</ul>
|
| 172 |
-
<p>
|
| 173 |
-
A sample submission file (<code>sample_submission.csv</code>) is also provided in the repository.
|
| 174 |
-
</p>
|
| 175 |
<p>
|
| 176 |
<strong>Column Definitions:</strong>
|
| 177 |
</p>
|
| 178 |
<ul>
|
|
|
|
| 179 |
<li><code>sentence</code>: Original sentence text (may be partially diacritized or non-diacritized).</li>
|
| 180 |
-
<li><code>
|
| 181 |
-
<li><code>start_word_index</code>, <code>end_word_index</code>: Word positions within the verse (or <code>-1</code> if non-Quranic).</li>
|
| 182 |
<li><code>tashkeel_sentence</code>: Fully diacritized sentence (auto-generated via a diacritization tool).</li>
|
| 183 |
<li><code>phoneme</code>: Phoneme sequence corresponding to the diacritized sentence (Nawar Halabi phonetizer).</li>
|
| 184 |
</ul>
|
|
@@ -195,23 +158,15 @@ ID,Labels
|
|
| 195 |
We also provide a high-quality TTS corpus for auxiliary experiments (e.g., data augmentation, synthetic pronunciation error simulation). This TTS set can be loaded via:
|
| 196 |
</p>
|
| 197 |
<ul>
|
| 198 |
-
<li><code>df_tts = load_dataset("IqraEval/Iqra_TTS"
|
| 199 |
</ul>
|
| 200 |
-
<p>
|
| 201 |
-
Researchers who wish to experiment with “synthetic mispronunciations” can use the TTS waveform + forced-alignment pipeline to generate various kinds of pronunciation errors in a controlled manner.
|
| 202 |
-
</p>
|
| 203 |
|
| 204 |
<!-- Resources & Links -->
|
| 205 |
<h2>Resources</h2>
|
| 206 |
<ul>
|
| 207 |
-
<li>
|
| 208 |
-
<a href="https://huggingface.co/datasets/mostafaashahin/IqraEval_Training_Data" target="_blank">
|
| 209 |
-
Training & Development Data on Hugging Face
|
| 210 |
-
</a>
|
| 211 |
-
</li>
|
| 212 |
<li>
|
| 213 |
<a href="https://huggingface.co/datasets/IqraEval/Iqra_train" target="_blank">
|
| 214 |
-
|
| 215 |
</a>
|
| 216 |
</li>
|
| 217 |
<li>
|
|
@@ -231,6 +186,49 @@ ID,Labels
|
|
| 231 |
</em>
|
| 232 |
</p>
|
| 233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
<!-- Placeholder for Future Details -->
|
| 235 |
<h2>Future Updates</h2>
|
| 236 |
<p>
|
|
|
|
| 37 |
</ul>
|
| 38 |
|
| 39 |
<!-- Task Description -->
|
| 40 |
+
|
| 41 |
+
<h2>🔊 Task Description</h2>
|
| 42 |
+
<p>
|
| 43 |
+
The Iqra'Eval task focuses on <strong>automatic pronunciation assessment</strong> in Qur’anic context.
|
| 44 |
+
Given a spoken audio clip of a verse and its fully vowelized reference text, your system should predict
|
| 45 |
+
the <strong>correct phoneme sequence</strong> actually spoken by the reciter.
|
| 46 |
+
</p>
|
| 47 |
+
<p>
|
| 48 |
+
By comparing this predicted sequence to the reference text and the gold phoneme sequence annotation, we can automatically detect pronunciation issues, such as:
|
| 49 |
+
</p>
|
| 50 |
+
<ul>
|
| 51 |
+
<li><strong>Substitutions</strong>: e.g., saying /k/ instead of /q/</li>
|
| 52 |
+
<li><strong>Insertions</strong>: adding a sound not present in the reference</li>
|
| 53 |
+
<li><strong>Deletions</strong>: skipping a required phoneme</li>
|
| 54 |
+
</ul>
|
| 55 |
+
<p>
|
| 56 |
+
This task helps diagnose and localize pronunciation errors, enabling educational feedback in applications like Qur’anic tutoring or speech evaluation tools.
|
| 57 |
+
</p>
|
| 58 |
+
|
| 59 |
+
<!-- <h2>Task Description</h2>
|
| 60 |
<p>
|
| 61 |
The Iqra’Eval shared task focuses on automatic mispronunciation detection and diagnosis in Qur’anic recitation. Given:
|
| 62 |
</p>
|
|
|
|
| 78 |
<li>Detect substitutions (e.g., pronouncing /q/ as /k/), deletions (e.g., dropping a hamza), or insertions (e.g., adding an extra vowel) of phonemes.</li>
|
| 79 |
<li>Localize the error to a specific phoneme index in the utterance.</li>
|
| 80 |
<li>Classify what type of mistake occurred based on Tajweed (e.g., madd errors, ikhfa, idgham, etc.).</li>
|
| 81 |
+
</ul> -->
|
| 82 |
|
| 83 |
<!-- Example & Illustration -->
|
| 84 |
+
<!-- <h2>Example</h2>
|
| 85 |
<p>
|
| 86 |
Suppose the reference verse (fully vowelized) is:
|
| 87 |
</p>
|
|
|
|
| 114 |
<p style="font-size: 0.9em; color: #555;">
|
| 115 |
<em>Figure: Example of a phoneme-level comparison between reference vs. predicted for an Arabic Qur’anic recitation.</em>
|
| 116 |
</p>
|
| 117 |
+
</div> -->
|
| 118 |
|
| 119 |
<!-- Evaluation Criteria -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
<!-- Dataset Description -->
|
| 122 |
<h2>Dataset Description</h2>
|
|
|
|
| 127 |
<li>
|
| 128 |
<strong>Training set:</strong> 79 hours of Modern Standard Arabic (MSA) speech, augmented with multiple Qur’anic recitations.
|
| 129 |
<br />
|
| 130 |
+
<code>df = load_dataset("IqraEval/Iqra_train", split="train")</code>
|
| 131 |
</li>
|
| 132 |
<li>
|
| 133 |
+
<strong>Development set:</strong> 3.4 hours reserved for tuning and validation.
|
| 134 |
<br />
|
| 135 |
+
<code>df = load_dataset("IqraEval/Iqra_train", split="dev")</code>
|
| 136 |
</li>
|
| 137 |
</ul>
|
|
|
|
|
|
|
|
|
|
| 138 |
<p>
|
| 139 |
<strong>Column Definitions:</strong>
|
| 140 |
</p>
|
| 141 |
<ul>
|
| 142 |
+
<li><code>audio</code>: Speech Array.</li>
|
| 143 |
<li><code>sentence</code>: Original sentence text (may be partially diacritized or non-diacritized).</li>
|
| 144 |
+
<li><code>index</code>: If from the Quran, the verse index (0–6265, including Basmalah); otherwise <code>-1</code>.</li>
|
|
|
|
| 145 |
<li><code>tashkeel_sentence</code>: Fully diacritized sentence (auto-generated via a diacritization tool).</li>
|
| 146 |
<li><code>phoneme</code>: Phoneme sequence corresponding to the diacritized sentence (Nawar Halabi phonetizer).</li>
|
| 147 |
</ul>
|
|
|
|
| 158 |
We also provide a high-quality TTS corpus for auxiliary experiments (e.g., data augmentation, synthetic pronunciation error simulation). This TTS set can be loaded via:
|
| 159 |
</p>
|
| 160 |
<ul>
|
| 161 |
+
<li><code>df_tts = load_dataset("IqraEval/Iqra_TTS")</code></li>
|
| 162 |
</ul>
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
<!-- Resources & Links -->
|
| 165 |
<h2>Resources</h2>
|
| 166 |
<ul>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
<li>
|
| 168 |
<a href="https://huggingface.co/datasets/IqraEval/Iqra_train" target="_blank">
|
| 169 |
+
Training & Development Data on Hugging Face
|
| 170 |
</a>
|
| 171 |
</li>
|
| 172 |
<li>
|
|
|
|
| 186 |
</em>
|
| 187 |
</p>
|
| 188 |
|
| 189 |
+
<h2>Evaluation Criteria</h2>
|
| 190 |
+
<p>
|
| 191 |
+
Systems will be scored on their ability to detect and correctly classify phoneme-level errors:
|
| 192 |
+
</p>
|
| 193 |
+
<ul>
|
| 194 |
+
<li><strong>Detection accuracy:</strong> Did the system spot that a phoneme-level error occurred in the segment?</li>
|
| 195 |
+
<li><strong>Classification F1-score:</strong> Mispronunciation Detection F1-score</li>
|
| 196 |
+
</ul>
|
| 197 |
+
<p>
|
| 198 |
+
<em>(Detailed evaluation weights and scripts will be made available on June 5, 2025.)</em>
|
| 199 |
+
</p>
|
| 200 |
+
|
| 201 |
+
<!-- Submission Details -->
|
| 202 |
+
<h2>Submission Details (Draft)</h2>
|
| 203 |
+
<p>
|
| 204 |
+
Participants are required to submit a CSV file named <code>submission.csv</code> containing the predicted phoneme sequences for each audio sample. The file must have exactly two columns:
|
| 205 |
+
</p>
|
| 206 |
+
<ul>
|
| 207 |
+
<li><strong>ID:</strong> Unique identifier of the audio sample.</li>
|
| 208 |
+
<li><strong>Labels:</strong> The predicted phoneme sequence, with each phoneme separated by a single space.</li>
|
| 209 |
+
</ul>
|
| 210 |
+
<p>
|
| 211 |
+
Below is a minimal example illustrating the required format:
|
| 212 |
+
</p>
|
| 213 |
+
<pre>
|
| 214 |
+
ID,Labels
|
| 215 |
+
0000_0001, i n n a m a a y a k h a l l a h a m i n ʕ i b a a d i h u l ʕ u l a m
|
| 216 |
+
0000_0002, m a a n a n s a k h u m i n i ʕ a a y a t i n
|
| 217 |
+
0000_0003, y u k h i k u m u n n u ʔ a u ʔ a m a n a t a n m m i n h u
|
| 218 |
+
…
|
| 219 |
+
</pre>
|
| 220 |
+
<p>
|
| 221 |
+
The first column (ID) should match exactly the audio filenames (without extension). The second column (Labels) is the predicted phoneme string.
|
| 222 |
+
</p>
|
| 223 |
+
<p>
|
| 224 |
+
<strong>Important:</strong>
|
| 225 |
+
<ul>
|
| 226 |
+
<li>Use UTF-8 encoding.</li>
|
| 227 |
+
<li>Do not include extra spaces at the start or end of each line.</li>
|
| 228 |
+
<li>Submit a single CSV file (no archives). Filename must be <code>submission.csv</code>.</li>
|
| 229 |
+
</ul>
|
| 230 |
+
</p>
|
| 231 |
+
|
| 232 |
<!-- Placeholder for Future Details -->
|
| 233 |
<h2>Future Updates</h2>
|
| 234 |
<p>
|