01Yassine commited on
Commit
5756d9d
·
verified ·
1 Parent(s): 96d3171

Update index.html

Browse files
Files changed (1) hide show
  1. index.html +73 -75
index.html CHANGED
@@ -37,7 +37,26 @@
37
  </ul>
38
 
39
  <!-- Task Description -->
40
- <h2>Task Description</h2>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  <p>
42
  The Iqra’Eval shared task focuses on automatic mispronunciation detection and diagnosis in Qur’anic recitation. Given:
43
  </p>
@@ -59,10 +78,10 @@
59
  <li>Detect substitutions (e.g., pronouncing /q/ as /k/), deletions (e.g., dropping a hamza), or insertions (e.g., adding an extra vowel) of phonemes.</li>
60
  <li>Localize the error to a specific phoneme index in the utterance.</li>
61
  <li>Classify what type of mistake occurred based on Tajweed (e.g., madd errors, ikhfa, idgham, etc.).</li>
62
- </ul>
63
 
64
  <!-- Example & Illustration -->
65
- <h2>Example</h2>
66
  <p>
67
  Suppose the reference verse (fully vowelized) is:
68
  </p>
@@ -95,62 +114,9 @@ inna l l aa h a ʕ a l a k u l l i ʃ a y ’ i n q a d i r u n
95
  <p style="font-size: 0.9em; color: #555;">
96
  <em>Figure: Example of a phoneme-level comparison between reference vs. predicted for an Arabic Qur’anic recitation.</em>
97
  </p>
98
- </div>
99
 
100
  <!-- Evaluation Criteria -->
101
- <h2>Evaluation Criteria</h2>
102
- <p>
103
- Systems will be scored on their ability to detect and correctly classify phoneme-level errors:
104
- </p>
105
- <ul>
106
- <li><strong>Detection accuracy:</strong> Did the system spot that a phoneme-level error occurred in the segment?</li>
107
- <li><strong>Localization precision:</strong> Did the system mark the correct positions (indices) in the phoneme sequence where the error(s) occurred?</li>
108
- <li><strong>Classification F1-score:</strong> Given that an error is detected at a particular position, did the system assign the correct error type (e.g., substitution vs. insertion vs. deletion, plus the specific Tajweed subcategory)?</li>
109
- </ul>
110
- <p>
111
- A final <strong>Composite Error Score (CES)</strong> will be computed by combining:
112
- </p>
113
- <ol>
114
- <li>Boundary-aware detection accuracy (punish off-by-one index errors lightly),</li>
115
- <li>Per-error-type classification F1-score (substitution, deletion, insertion), and</li>
116
- <li>Overall phoneme-sequence alignment score (Levenshtein-based alignment to reward correct sequences).
117
- <!-- Note: Detailed weightings will be released along with the test data. -->
118
- </li>
119
- </ol>
120
- <p>
121
- <em>(Detailed evaluation weights and scripts will be made available on June 5, 2025.)</em>
122
- </p>
123
-
124
- <!-- Submission Details -->
125
- <h2>Submission Details (Draft)</h2>
126
- <p>
127
- Participants are required to submit a CSV file named <code>submission.csv</code> containing the predicted phoneme sequences for each audio sample. The file must have exactly two columns:
128
- </p>
129
- <ul>
130
- <li><strong>ID:</strong> Unique identifier of the audio sample.</li>
131
- <li><strong>Labels:</strong> The predicted phoneme sequence, with each phoneme separated by a single space.</li>
132
- </ul>
133
- <p>
134
- Below is a minimal example illustrating the required format:
135
- </p>
136
- <pre>
137
- ID,Labels
138
- 0000_0001, i n n a m a a y a k h a l l a h a m i n ʕ i b a a d i h u l ʕ u l a m
139
- 0000_0002, m a a n a n s a k h u m i n i ʕ a a y a t i n
140
- 0000_0003, y u k h i k u m u n n u ʔ a u ʔ a m a n a t a n m m i n h u
141
-
142
- </pre>
143
- <p>
144
- The first column (ID) should match exactly the audio filenames (without extension). The second column (Labels) is the predicted phoneme string.
145
- </p>
146
- <p>
147
- <strong>Important:</strong>
148
- <ul>
149
- <li>Use UTF-8 encoding.</li>
150
- <li>Do not include extra spaces at the start or end of each line.</li>
151
- <li>Submit a single CSV file (no archives). Filename must be <code>submission.csv</code>.</li>
152
- </ul>
153
- </p>
154
 
155
  <!-- Dataset Description -->
156
  <h2>Dataset Description</h2>
@@ -161,24 +127,21 @@ ID,Labels
161
  <li>
162
  <strong>Training set:</strong> 79 hours of Modern Standard Arabic (MSA) speech, augmented with multiple Qur’anic recitations.
163
  <br />
164
- <code>df = load_dataset("mostafaashahin/IqraEval_Training_Data", split="train")</code>
165
  </li>
166
  <li>
167
- <strong>Development set (QuranMB):</strong> 3.4 hours reserved for tuning and validation.
168
  <br />
169
- <code>df = load_dataset("mostafaashahin/IqraEval_Training_Data", split="dev")</code>
170
  </li>
171
  </ul>
172
- <p>
173
- A sample submission file (<code>sample_submission.csv</code>) is also provided in the repository.
174
- </p>
175
  <p>
176
  <strong>Column Definitions:</strong>
177
  </p>
178
  <ul>
 
179
  <li><code>sentence</code>: Original sentence text (may be partially diacritized or non-diacritized).</li>
180
- <li><code>q_index</code>: If from the Quran, the verse index (0–6265, including Basmalah); otherwise <code>-1</code>.</li>
181
- <li><code>start_word_index</code>, <code>end_word_index</code>: Word positions within the verse (or <code>-1</code> if non-Quranic).</li>
182
  <li><code>tashkeel_sentence</code>: Fully diacritized sentence (auto-generated via a diacritization tool).</li>
183
  <li><code>phoneme</code>: Phoneme sequence corresponding to the diacritized sentence (Nawar Halabi phonetizer).</li>
184
  </ul>
@@ -195,23 +158,15 @@ ID,Labels
195
  We also provide a high-quality TTS corpus for auxiliary experiments (e.g., data augmentation, synthetic pronunciation error simulation). This TTS set can be loaded via:
196
  </p>
197
  <ul>
198
- <li><code>df_tts = load_dataset("IqraEval/Iqra_TTS", split="train")</code></li>
199
  </ul>
200
- <p>
201
- Researchers who wish to experiment with “synthetic mispronunciations” can use the TTS waveform + forced-alignment pipeline to generate various kinds of pronunciation errors in a controlled manner.
202
- </p>
203
 
204
  <!-- Resources & Links -->
205
  <h2>Resources</h2>
206
  <ul>
207
- <li>
208
- <a href="https://huggingface.co/datasets/mostafaashahin/IqraEval_Training_Data" target="_blank">
209
- Training &amp; Development Data on Hugging Face
210
- </a>
211
- </li>
212
  <li>
213
  <a href="https://huggingface.co/datasets/IqraEval/Iqra_train" target="_blank">
214
- IqraEval_Training_Data (alias)
215
  </a>
216
  </li>
217
  <li>
@@ -231,6 +186,49 @@ ID,Labels
231
  </em>
232
  </p>
233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234
  <!-- Placeholder for Future Details -->
235
  <h2>Future Updates</h2>
236
  <p>
 
37
  </ul>
38
 
39
  <!-- Task Description -->
40
+
41
+ <h2>🔊 Task Description</h2>
42
+ <p>
43
+ The Iqra'Eval task focuses on <strong>automatic pronunciation assessment</strong> in Qur’anic context.
44
+ Given a spoken audio clip of a verse and its fully vowelized reference text, your system should predict
45
+ the <strong>correct phoneme sequence</strong> actually spoken by the reciter.
46
+ </p>
47
+ <p>
48
+ By comparing this predicted sequence to the reference text and the gold phoneme sequence annotation, we can automatically detect pronunciation issues, such as:
49
+ </p>
50
+ <ul>
51
+ <li><strong>Substitutions</strong>: e.g., saying /k/ instead of /q/</li>
52
+ <li><strong>Insertions</strong>: adding a sound not present in the reference</li>
53
+ <li><strong>Deletions</strong>: skipping a required phoneme</li>
54
+ </ul>
55
+ <p>
56
+ This task helps diagnose and localize pronunciation errors, enabling educational feedback in applications like Qur’anic tutoring or speech evaluation tools.
57
+ </p>
58
+
59
+ <!-- <h2>Task Description</h2>
60
  <p>
61
  The Iqra’Eval shared task focuses on automatic mispronunciation detection and diagnosis in Qur’anic recitation. Given:
62
  </p>
 
78
  <li>Detect substitutions (e.g., pronouncing /q/ as /k/), deletions (e.g., dropping a hamza), or insertions (e.g., adding an extra vowel) of phonemes.</li>
79
  <li>Localize the error to a specific phoneme index in the utterance.</li>
80
  <li>Classify what type of mistake occurred based on Tajweed (e.g., madd errors, ikhfa, idgham, etc.).</li>
81
+ </ul> -->
82
 
83
  <!-- Example & Illustration -->
84
+ <!-- <h2>Example</h2>
85
  <p>
86
  Suppose the reference verse (fully vowelized) is:
87
  </p>
 
114
  <p style="font-size: 0.9em; color: #555;">
115
  <em>Figure: Example of a phoneme-level comparison between reference vs. predicted for an Arabic Qur’anic recitation.</em>
116
  </p>
117
+ </div> -->
118
 
119
  <!-- Evaluation Criteria -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
 
121
  <!-- Dataset Description -->
122
  <h2>Dataset Description</h2>
 
127
  <li>
128
  <strong>Training set:</strong> 79 hours of Modern Standard Arabic (MSA) speech, augmented with multiple Qur’anic recitations.
129
  <br />
130
+ <code>df = load_dataset("IqraEval/Iqra_train", split="train")</code>
131
  </li>
132
  <li>
133
+ <strong>Development set:</strong> 3.4 hours reserved for tuning and validation.
134
  <br />
135
+ <code>df = load_dataset("IqraEval/Iqra_train", split="dev")</code>
136
  </li>
137
  </ul>
 
 
 
138
  <p>
139
  <strong>Column Definitions:</strong>
140
  </p>
141
  <ul>
142
+ <li><code>audio</code>: Speech Array.</li>
143
  <li><code>sentence</code>: Original sentence text (may be partially diacritized or non-diacritized).</li>
144
+ <li><code>index</code>: If from the Quran, the verse index (0–6265, including Basmalah); otherwise <code>-1</code>.</li>
 
145
  <li><code>tashkeel_sentence</code>: Fully diacritized sentence (auto-generated via a diacritization tool).</li>
146
  <li><code>phoneme</code>: Phoneme sequence corresponding to the diacritized sentence (Nawar Halabi phonetizer).</li>
147
  </ul>
 
158
  We also provide a high-quality TTS corpus for auxiliary experiments (e.g., data augmentation, synthetic pronunciation error simulation). This TTS set can be loaded via:
159
  </p>
160
  <ul>
161
+ <li><code>df_tts = load_dataset("IqraEval/Iqra_TTS")</code></li>
162
  </ul>
 
 
 
163
 
164
  <!-- Resources & Links -->
165
  <h2>Resources</h2>
166
  <ul>
 
 
 
 
 
167
  <li>
168
  <a href="https://huggingface.co/datasets/IqraEval/Iqra_train" target="_blank">
169
+ Training &amp; Development Data on Hugging Face
170
  </a>
171
  </li>
172
  <li>
 
186
  </em>
187
  </p>
188
 
189
+ <h2>Evaluation Criteria</h2>
190
+ <p>
191
+ Systems will be scored on their ability to detect and correctly classify phoneme-level errors:
192
+ </p>
193
+ <ul>
194
+ <li><strong>Detection accuracy:</strong> Did the system spot that a phoneme-level error occurred in the segment?</li>
195
+ <li><strong>Classification F1-score:</strong> Mispronunciation Detection F1-score</li>
196
+ </ul>
197
+ <p>
198
+ <em>(Detailed evaluation weights and scripts will be made available on June 5, 2025.)</em>
199
+ </p>
200
+
201
+ <!-- Submission Details -->
202
+ <h2>Submission Details (Draft)</h2>
203
+ <p>
204
+ Participants are required to submit a CSV file named <code>submission.csv</code> containing the predicted phoneme sequences for each audio sample. The file must have exactly two columns:
205
+ </p>
206
+ <ul>
207
+ <li><strong>ID:</strong> Unique identifier of the audio sample.</li>
208
+ <li><strong>Labels:</strong> The predicted phoneme sequence, with each phoneme separated by a single space.</li>
209
+ </ul>
210
+ <p>
211
+ Below is a minimal example illustrating the required format:
212
+ </p>
213
+ <pre>
214
+ ID,Labels
215
+ 0000_0001, i n n a m a a y a k h a l l a h a m i n ʕ i b a a d i h u l ʕ u l a m
216
+ 0000_0002, m a a n a n s a k h u m i n i ʕ a a y a t i n
217
+ 0000_0003, y u k h i k u m u n n u ʔ a u ʔ a m a n a t a n m m i n h u
218
+
219
+ </pre>
220
+ <p>
221
+ The first column (ID) should match exactly the audio filenames (without extension). The second column (Labels) is the predicted phoneme string.
222
+ </p>
223
+ <p>
224
+ <strong>Important:</strong>
225
+ <ul>
226
+ <li>Use UTF-8 encoding.</li>
227
+ <li>Do not include extra spaces at the start or end of each line.</li>
228
+ <li>Submit a single CSV file (no archives). Filename must be <code>submission.csv</code>.</li>
229
+ </ul>
230
+ </p>
231
+
232
  <!-- Placeholder for Future Details -->
233
  <h2>Future Updates</h2>
234
  <p>