Update index.html
Browse files- index.html +59 -59
index.html
CHANGED
|
@@ -17,21 +17,17 @@
|
|
| 17 |
<!-- Overview Section -->
|
| 18 |
<h2>Overview</h2>
|
| 19 |
<p>
|
| 20 |
-
<strong>Iqra’Eval</strong> is a shared task aimed at advancing <strong>automatic assessment of Qur’anic recitation pronunciation</strong> by leveraging computational methods to detect and diagnose pronunciation errors. The focus on Qur’anic recitation provides a standardized and well-defined context for evaluating Modern Standard Arabic (MSA) pronunciation
|
| 21 |
</p>
|
| 22 |
<p>
|
| 23 |
-
Participants will develop systems capable of
|
| 24 |
</p>
|
| 25 |
-
<ul>
|
| 26 |
-
<li>Detecting whether a segment of Qur’anic recitation contains pronunciation errors.</li>
|
| 27 |
-
<li>Diagnosing the nature of the error (e.g., substitution, deletion, or insertion of phonemes).</li>
|
| 28 |
-
</ul>
|
| 29 |
|
| 30 |
<!-- Timeline Section -->
|
| 31 |
<h2>Timeline</h2>
|
| 32 |
<ul>
|
| 33 |
<li><strong>June 1, 2025</strong>: Official announcement of the shared task</li>
|
| 34 |
-
<li><strong>June
|
| 35 |
<li><strong>July 24, 2025</strong>: Registration deadline and release of test data</li>
|
| 36 |
<li><strong>July 27, 2025</strong>: End of evaluation cycle (test set submission closes)</li>
|
| 37 |
<li><strong>July 30, 2025</strong>: Final results released</li>
|
|
@@ -93,27 +89,8 @@
|
|
| 93 |
<p>
|
| 94 |
The annotated phoneme sequence indicates that the phoneme <code>ta</code> was omitted, but the model failed to detect it.
|
| 95 |
</p>
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
<ol>
|
| 99 |
-
<li>
|
| 100 |
-
<strong>Advanced Mispronunciation Detection Models</strong><br>
|
| 101 |
-
Apply state-of-the-art self-supervised models (e.g.,
|
| 102 |
-
<a href="https://arxiv.org/abs/2111.06331" target="_blank">Wav2Vec2.0</a>, HuBERT)
|
| 103 |
-
pre-trained on Arabic speech. These models can be fine-tuned on Quranic recitations to improve phoneme-level accuracy.
|
| 104 |
-
</li>
|
| 105 |
-
<li>
|
| 106 |
-
<strong>Data Augmentation Strategies</strong><br>
|
| 107 |
-
Create synthetic mispronunciation examples using pipelines like
|
| 108 |
-
<a href="https://arxiv.org/abs/2211.00923" target="_blank">SpeechBlender</a>.
|
| 109 |
-
Augmenting limited Arabic/Quranic speech data helps mitigate data scarcity and improves model robustness.
|
| 110 |
-
</li>
|
| 111 |
-
<li>
|
| 112 |
-
<strong>Analysis of Common Mispronunciation Patterns</strong><br>
|
| 113 |
-
Perform statistical analysis on the QuranMB dataset to identify prevalent errors (e.g., substituting similar phonemes, swapping vowels).
|
| 114 |
-
These insights can drive targeted training and tailored feedback rules.
|
| 115 |
-
</li>
|
| 116 |
-
</ol>
|
| 117 |
|
| 118 |
<h2>Training Dataset: Description</h2>
|
| 119 |
<p>
|
|
@@ -189,7 +166,38 @@
|
|
| 189 |
For detailed instructions on data access, phonetizer installation, and baseline usage, please refer to the GitHub README.
|
| 190 |
</em>
|
| 191 |
</p>
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
<h2>Evaluation Criteria</h2>
|
| 194 |
<p>
|
| 195 |
The primary evaluation metric for the IqraEval system is the <strong>F1-score</strong> at the phoneme level. In addition, we adopt a hierarchical evaluation structure, <a href="https://arxiv.org/pdf/2310.13974" target="_blank">MDD Overview</a>, that breaks down performance into detection and diagnostic phases.
|
|
@@ -253,37 +261,29 @@
|
|
| 253 |
</ul>
|
| 254 |
</p>
|
| 255 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
-
<!-- Submission Details -->
|
| 258 |
-
<h2>Submission Details (Draft)</h2>
|
| 259 |
-
<p>
|
| 260 |
-
Participants are required to submit a CSV file named <code>submission.csv</code> containing the predicted phoneme sequences for each audio sample. The file must have exactly two columns:
|
| 261 |
-
</p>
|
| 262 |
-
<ul>
|
| 263 |
-
<li><strong>ID:</strong> Unique identifier of the audio sample.</li>
|
| 264 |
-
<li><strong>Labels:</strong> The predicted phoneme sequence, with each phoneme separated by a single space.</li>
|
| 265 |
-
</ul>
|
| 266 |
-
<p>
|
| 267 |
-
Below is a minimal example illustrating the required format:
|
| 268 |
-
</p>
|
| 269 |
-
<pre>
|
| 270 |
-
ID,Labels
|
| 271 |
-
0000_0001, i n n a m a a y a k h a l l a h a m i n ʕ i b a a d i h u l ʕ u l a m
|
| 272 |
-
0000_0002, m a a n a n s a k h u m i n i ʕ a a y a t i n
|
| 273 |
-
0000_0003, y u k h i k u m u n n u ʔ a u ʔ a m a n a t a n m m i n h u
|
| 274 |
-
…
|
| 275 |
-
</pre>
|
| 276 |
-
<p>
|
| 277 |
-
The first column (ID) should match exactly the audio filenames (without extension). The second column (Labels) is the predicted phoneme string.
|
| 278 |
-
</p>
|
| 279 |
-
<p>
|
| 280 |
-
<strong>Important:</strong>
|
| 281 |
-
<ul>
|
| 282 |
-
<li>Use UTF-8 encoding.</li>
|
| 283 |
-
<li>Do not include extra spaces at the start or end of each line.</li>
|
| 284 |
-
<li>Submit a single CSV file (no archives). Filename must be <code>teamID_submission.csv</code>.</li>
|
| 285 |
-
</ul>
|
| 286 |
-
</p>
|
| 287 |
|
| 288 |
<!-- Placeholder for Future Details -->
|
| 289 |
<h2>Future Updates</h2>
|
|
|
|
| 17 |
<!-- Overview Section -->
|
| 18 |
<h2>Overview</h2>
|
| 19 |
<p>
|
| 20 |
+
<strong>Iqra’Eval</strong> is a shared task aimed at advancing <strong>automatic assessment of Qur’anic recitation pronunciation</strong> by leveraging computational methods to detect and diagnose pronunciation errors. The focus on Qur’anic recitation provides a standardized and well-defined context for evaluating Modern Standard Arabic (MSA) pronunciation.
|
| 21 |
</p>
|
| 22 |
<p>
|
| 23 |
+
Participants will develop systems capable of Detecting Mispronunciations (e.g., substitution, deletion, or insertion of phonemes).
|
| 24 |
</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
<!-- Timeline Section -->
|
| 27 |
<h2>Timeline</h2>
|
| 28 |
<ul>
|
| 29 |
<li><strong>June 1, 2025</strong>: Official announcement of the shared task</li>
|
| 30 |
+
<li><strong>June 10, 2025</strong>: Release of training data, development set (QuranMB), phonetizer script, and baseline systems</li>
|
| 31 |
<li><strong>July 24, 2025</strong>: Registration deadline and release of test data</li>
|
| 32 |
<li><strong>July 27, 2025</strong>: End of evaluation cycle (test set submission closes)</li>
|
| 33 |
<li><strong>July 30, 2025</strong>: Final results released</li>
|
|
|
|
| 89 |
<p>
|
| 90 |
The annotated phoneme sequence indicates that the phoneme <code>ta</code> was omitted, but the model failed to detect it.
|
| 91 |
</p>
|
| 92 |
+
|
| 93 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
<h2>Training Dataset: Description</h2>
|
| 96 |
<p>
|
|
|
|
| 166 |
For detailed instructions on data access, phonetizer installation, and baseline usage, please refer to the GitHub README.
|
| 167 |
</em>
|
| 168 |
</p>
|
| 169 |
+
|
| 170 |
+
<!-- Submission Details -->
|
| 171 |
+
<h2>Submission Details (Draft)</h2>
|
| 172 |
+
<p>
|
| 173 |
+
Participants are required to submit a CSV file named <code>submission.csv</code> containing the predicted phoneme sequences for each audio sample. The file must have exactly two columns:
|
| 174 |
+
</p>
|
| 175 |
+
<ul>
|
| 176 |
+
<li><strong>ID:</strong> Unique identifier of the audio sample.</li>
|
| 177 |
+
<li><strong>Labels:</strong> The predicted phoneme sequence, with each phoneme separated by a single space.</li>
|
| 178 |
+
</ul>
|
| 179 |
+
<p>
|
| 180 |
+
Below is a minimal example illustrating the required format:
|
| 181 |
+
</p>
|
| 182 |
+
<pre>
|
| 183 |
+
ID,Labels
|
| 184 |
+
0000_0001, i n n a m a a y a k h a l l a h a m i n ʕ i b a a d i h u l ʕ u l a m
|
| 185 |
+
0000_0002, m a a n a n s a k h u m i n i ʕ a a y a t i n
|
| 186 |
+
0000_0003, y u k h i k u m u n n u ʔ a u ʔ a m a n a t a n m m i n h u
|
| 187 |
+
…
|
| 188 |
+
</pre>
|
| 189 |
+
<p>
|
| 190 |
+
The first column (ID) should match exactly the audio filenames (without extension). The second column (Labels) is the predicted phoneme string.
|
| 191 |
+
</p>
|
| 192 |
+
<p>
|
| 193 |
+
<strong>Important:</strong>
|
| 194 |
+
<ul>
|
| 195 |
+
<li>Use UTF-8 encoding.</li>
|
| 196 |
+
<li>Do not include extra spaces at the start or end of each line.</li>
|
| 197 |
+
<li>Submit a single CSV file (no archives). Filename must be <code>teamID_submission.csv</code>.</li>
|
| 198 |
+
</ul>
|
| 199 |
+
</p>
|
| 200 |
+
|
| 201 |
<h2>Evaluation Criteria</h2>
|
| 202 |
<p>
|
| 203 |
The primary evaluation metric for the IqraEval system is the <strong>F1-score</strong> at the phoneme level. In addition, we adopt a hierarchical evaluation structure, <a href="https://arxiv.org/pdf/2310.13974" target="_blank">MDD Overview</a>, that breaks down performance into detection and diagnostic phases.
|
|
|
|
| 261 |
</ul>
|
| 262 |
</p>
|
| 263 |
|
| 264 |
+
|
| 265 |
+
<h2>Potential Research Directions</h2>
|
| 266 |
+
<ol>
|
| 267 |
+
<li>
|
| 268 |
+
<strong>Advanced Mispronunciation Detection Models</strong><br>
|
| 269 |
+
Apply state-of-the-art self-supervised models (e.g.,
|
| 270 |
+
<a href="https://arxiv.org/abs/2111.06331" target="_blank">Wav2Vec2.0</a>, HuBERT)
|
| 271 |
+
pre-trained on Arabic speech. These models can be fine-tuned on Quranic recitations to improve phoneme-level accuracy.
|
| 272 |
+
</li>
|
| 273 |
+
<li>
|
| 274 |
+
<strong>Data Augmentation Strategies</strong><br>
|
| 275 |
+
Create synthetic mispronunciation examples using pipelines like
|
| 276 |
+
<a href="https://arxiv.org/abs/2211.00923" target="_blank">SpeechBlender</a>.
|
| 277 |
+
Augmenting limited Arabic/Quranic speech data helps mitigate data scarcity and improves model robustness.
|
| 278 |
+
</li>
|
| 279 |
+
<li>
|
| 280 |
+
<strong>Analysis of Common Mispronunciation Patterns</strong><br>
|
| 281 |
+
Perform statistical analysis on the QuranMB dataset to identify prevalent errors (e.g., substituting similar phonemes, swapping vowels).
|
| 282 |
+
These insights can drive targeted training and tailored feedback rules.
|
| 283 |
+
</li>
|
| 284 |
+
</ol>
|
| 285 |
+
|
| 286 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
<!-- Placeholder for Future Details -->
|
| 289 |
<h2>Future Updates</h2>
|