| 
							 | 
						<!doctype html> | 
					
					
						
						| 
							 | 
						<html lang="en"> | 
					
					
						
						| 
							 | 
						<head> | 
					
					
						
						| 
							 | 
						  <meta charset="utf-8" /> | 
					
					
						
						| 
							 | 
						  <meta name="viewport" content="width=device-width" /> | 
					
					
						
						| 
							 | 
						  <title>Iqra’Eval Shared Task</title> | 
					
					
						
						| 
							 | 
						  <style> | 
					
					
						
						| 
							 | 
						    :root { | 
					
					
						
						| 
							 | 
						      --navy-blue: #001f4d; | 
					
					
						
						| 
							 | 
						      --coral: #ff6f61; | 
					
					
						
						| 
							 | 
						      --light-gray: #f5f7fa; | 
					
					
						
						| 
							 | 
						      --text-dark: #222; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    body { | 
					
					
						
						| 
							 | 
						      font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; | 
					
					
						
						| 
							 | 
						      background-color: var(--light-gray); | 
					
					
						
						| 
							 | 
						      color: var(--text-dark); | 
					
					
						
						| 
							 | 
						      margin: 20px; | 
					
					
						
						| 
							 | 
						      line-height: 1.6; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    h1, h2, h3 { | 
					
					
						
						| 
							 | 
						      color: var(--navy-blue); | 
					
					
						
						| 
							 | 
						      font-weight: 700; | 
					
					
						
						| 
							 | 
						      margin-top: 1.2em; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    h1 { | 
					
					
						
						| 
							 | 
						      text-align: center; | 
					
					
						
						| 
							 | 
						      font-size: 2.8rem; | 
					
					
						
						| 
							 | 
						      margin-bottom: 0.3em; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    h2 { | 
					
					
						
						| 
							 | 
						      border-bottom: 3px solid var(--coral); | 
					
					
						
						| 
							 | 
						      padding-bottom: 0.3em; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    h3 { | 
					
					
						
						| 
							 | 
						      color: var(--coral); | 
					
					
						
						| 
							 | 
						      margin-top: 1em; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    p, ul, pre { | 
					
					
						
						| 
							 | 
						      max-width: 900px; | 
					
					
						
						| 
							 | 
						      margin: 0.8em auto; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    ul { padding-left: 1.2em; } | 
					
					
						
						| 
							 | 
						    ul li { margin: 0.4em 0; } | 
					
					
						
						| 
							 | 
						    code { | 
					
					
						
						| 
							 | 
						      background-color: #eef4f8; | 
					
					
						
						| 
							 | 
						      color: var(--navy-blue); | 
					
					
						
						| 
							 | 
						      padding: 2px 6px; | 
					
					
						
						| 
							 | 
						      border-radius: 4px; | 
					
					
						
						| 
							 | 
						      font-family: Consolas, monospace; | 
					
					
						
						| 
							 | 
						      font-size: 0.9em; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    pre { | 
					
					
						
						| 
							 | 
						      background-color: #eef4f8; | 
					
					
						
						| 
							 | 
						      padding: 1em; | 
					
					
						
						| 
							 | 
						      border-radius: 8px; | 
					
					
						
						| 
							 | 
						      overflow-x: auto; | 
					
					
						
						| 
							 | 
						      font-size: 0.95em; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    a { | 
					
					
						
						| 
							 | 
						      color: var(--coral); | 
					
					
						
						| 
							 | 
						      text-decoration: none; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    a:hover { text-decoration: underline; } | 
					
					
						
						| 
							 | 
						    .card { | 
					
					
						
						| 
							 | 
						      max-width: 960px; | 
					
					
						
						| 
							 | 
						      background: white; | 
					
					
						
						| 
							 | 
						      margin: 0 auto 40px; | 
					
					
						
						| 
							 | 
						      padding: 2em 2.5em; | 
					
					
						
						| 
							 | 
						      box-shadow: 0 4px 14px rgba(0,0,0,0.1); | 
					
					
						
						| 
							 | 
						      border-radius: 12px; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    img { | 
					
					
						
						| 
							 | 
						      display: block; | 
					
					
						
						| 
							 | 
						      margin: 20px auto; | 
					
					
						
						| 
							 | 
						      max-width: 100%; | 
					
					
						
						| 
							 | 
						      height: auto; | 
					
					
						
						| 
							 | 
						      border-radius: 8px; | 
					
					
						
						| 
							 | 
						      box-shadow: 0 4px 8px rgba(0,31,77,0.15); | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    .centered p { | 
					
					
						
						| 
							 | 
						      text-align: center; | 
					
					
						
						| 
							 | 
						      font-style: italic; | 
					
					
						
						| 
							 | 
						      color: var(--navy-blue); | 
					
					
						
						| 
							 | 
						      margin-top: 0.4em; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    .highlight { | 
					
					
						
						| 
							 | 
						      color: var(--coral); | 
					
					
						
						| 
							 | 
						      font-weight: 700; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    p > ul { margin-top: 0.3em; } | 
					
					
						
						| 
							 | 
						  </style> | 
					
					
						
						| 
							 | 
						</head> | 
					
					
						
						| 
							 | 
						<body> | 
					
					
						
						| 
							 | 
						  <div class="card"> | 
					
					
						
						| 
							 | 
						    <h1>Iqra’Eval Shared Task</h1> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <img src="IqraEval.png" alt="IqraEval Logo" /> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h2>Overview</h2> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      <strong>Iqra'Eval</strong> is a shared task aimed at advancing <strong>automatic assessment of Qur’anic recitation pronunciation</strong> by leveraging computational methods to detect and diagnose pronunciation errors. The focus on Qur’anic recitation provides a standardized and well-defined context for evaluating Modern Standard Arabic (MSA) pronunciation. | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      Participants will develop systems capable of detecting mispronunciations (e.g., substitution, deletion, or insertion of phonemes). | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h2>Timeline</h2> | 
					
					
						
						| 
							 | 
						    <ul> | 
					
					
						
						| 
							 | 
						      <li><strong>June 1, 2025</strong>: Official announcement</li> | 
					
					
						
						| 
							 | 
						      <li><strong>June 10, 2025</strong>: Release of training data, dev set, phonetizer, baselines</li> | 
					
					
						
						| 
							 | 
						      <li><strong>July 20, 2025</strong>: Registration deadline</li> | 
					
					
						
						| 
							 | 
						      <li><strong>July 24, 2025</strong>: QuranMB test data release</li> | 
					
					
						
						| 
							 | 
						      <li><strong>July 29, 2025</strong>: Test set submission closes</li> | 
					
					
						
						| 
							 | 
						      <li><strong>July 30, 2025</strong>: Final results released</li> | 
					
					
						
						| 
							 | 
						      <li><strong>August 15, 2025</strong>: System description papers due</li> | 
					
					
						
						| 
							 | 
						      <li><strong>August 22, 2025</strong>: Notification of acceptance</li> | 
					
					
						
						| 
							 | 
						      <li><strong>September 5, 2025</strong>: Camera-ready versions due</li> | 
					
					
						
						| 
							 | 
						    </ul> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h2>Task Description: Quranic Mispronunciation Detection System</h2> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      Design a model to detect and provide detailed feedback on mispronunciations in Quranic recitations. Users read vowelized verses; the model predicts the spoken phoneme sequence and flags deviations. Evaluation is on the <strong>QuranMB.v2</strong> dataset with human‐annotated errors. | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						    <div class="centered"> | 
					
					
						
						| 
							 | 
						      <img src="task.png" alt="System Overview" /> | 
					
					
						
						| 
							 | 
						      <p>Figure: Overview of the Mispronunciation Detection Workflow</p> | 
					
					
						
						| 
							 | 
						    </div> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h3>1. Read the Verse</h3> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      System shows a <strong>Reference Verse</strong> plus its <strong>Reference Phoneme Sequence</strong>. | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						    <p><strong>Example:</strong></p> | 
					
					
						
						| 
							 | 
						    <ul> | 
					
					
						
						| 
							 | 
						      <li><strong>Arabic:</strong> إِنَّ الصَّفَا وَالْمَرْوَةَ مِنْ شَعَائِرِ اللَّهِ</li> | 
					
					
						
						| 
							 | 
						      <li> | 
					
					
						
						| 
							 | 
						        <strong>Phoneme:</strong>  | 
					
					
						
						| 
							 | 
						        <code>< i n n a SS A f aa w a l m a r w a t a m i n $ a E a a < i r i l l a h i</code> | 
					
					
						
						| 
							 | 
						      </li> | 
					
					
						
						| 
							 | 
						    </ul> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h3>2. Save Recording</h3> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      User recites; system captures and stores the audio waveform. | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h3>3. Mispronunciation Detection</h3> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      Model predicts the phoneme sequence—deviations from reference indicate mispronunciations. | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						    <p><strong>Example of Mispronunciation:</strong></p> | 
					
					
						
						| 
							 | 
						    <ul> | 
					
					
						
						| 
							 | 
						      <li><strong>Reference:</strong> <code>< i n n a SS A f aa w a l m a r w a t a m i n $ a E a a < i r i l l a h i</code></li> | 
					
					
						
						| 
							 | 
						      <li><strong>Predicted:</strong> <code>< i n n a SS A f aa w a l m a r w a t a m i n s a E a a < i r u l l a h i</code></li> | 
					
					
						
						| 
							 | 
						      <li> | 
					
					
						
						| 
							 | 
						        <strong>Annotated:</strong>  | 
					
					
						
						| 
							 | 
						        <code>< i n n a SS A f aa w a l m a r w <span class="highlight">s</span> a E a a < i <span class="highlight">r u</span> l l a h i</code> | 
					
					
						
						| 
							 | 
						      </li> | 
					
					
						
						| 
							 | 
						    </ul> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      Here, <code>$</code>→<code>s</code> and <code>i</code>→<code>u</code>; omission of <code>ta</code> went undetected. | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h2>Training Dataset: Description</h2> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      Hosted on Hugging Face: | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						    <ul> | 
					
					
						
						| 
							 | 
						      <li> | 
					
					
						
						| 
							 | 
						        <strong>Training:</strong> 79 hours of MSA speech augmented with Qur’anic recitations   | 
					
					
						
						| 
							 | 
						        <code>load_dataset("IqraEval/Iqra_train", split="train")</code> | 
					
					
						
						| 
							 | 
						      </li> | 
					
					
						
						| 
							 | 
						      <li> | 
					
					
						
						| 
							 | 
						        <strong>Development:</strong> 3.4 hours as dev set | 
					
					
						
						| 
							 | 
						        <code>load_dataset("IqraEval/Iqra_train", split="dev")</code> | 
					
					
						
						| 
							 | 
						      </li> | 
					
					
						
						| 
							 | 
						    </ul> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      <strong>Columns:</strong> | 
					
					
						
						| 
							 | 
						      <ul> | 
					
					
						
						| 
							 | 
						        <li><code>audio</code>: waveform</li> | 
					
					
						
						| 
							 | 
						        <li><code>sentence</code>: original text (verse)</li> | 
					
					
						
						| 
							 | 
						        <li><code>index</code>: verse ID</li> | 
					
					
						
						| 
							 | 
						        <li><code>tashkeel_sentence</code>: fully diacritized text (verse)</li> | 
					
					
						
						| 
							 | 
						        <li><code>phoneme</code>: phoneme sequence (using phonetizer)</li> | 
					
					
						
						| 
							 | 
						      </ul> | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h2>Training Dataset: TTS Data (Optional)</h2> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      Auxiliary high-quality TTS corpus for augmentation:   | 
					
					
						
						| 
							 | 
						      <code>load_dataset("IqraEval/Iqra_TTS")</code> | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h2>Test Dataset: QuranMB.v2</h2> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      98 verses × 18 speakers ≈ 2 h, with deliberate errors and human annotations.   | 
					
					
						
						| 
							 | 
						      <code>load_dataset("IqraEval/Iqra_QuranMB_v2")</code> | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h2>Resources & Links</h2> | 
					
					
						
						| 
							 | 
						    <ul> | 
					
					
						
						| 
							 | 
						      <li><a href="https://github.com/Iqra-Eval/MSA_phonetiser" target="_blank">Phonetiser script (GitHub)</a></li> | 
					
					
						
						| 
							 | 
						      <li><a href="https://huggingface.co/datasets/IqraEval/Iqra_train" target="_blank">Training & Dev Data (Hugging Face)</a></li> | 
					
					
						
						| 
							 | 
						      <li><a href="https://huggingface.co/datasets/IqraEval/Iqra_TTS" target="_blank">TTS Data (Hugging Face)</a></li> | 
					
					
						
						| 
							 | 
						      <li><a href="https://github.com/Iqra-Eval/interspeech_IqraEval" target="_blank">Baseline Systems & Scripts (GitHub)</a></li> | 
					
					
						
						| 
							 | 
						    </ul> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h2>Submission Details (Draft)</h2> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      Submit a UTF-8 CSV named <code>teamID_submission.csv</code> with two columns: | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						    <ul> | 
					
					
						
						| 
							 | 
						      <li><strong>ID:</strong> audio filename (no extension)</li> | 
					
					
						
						| 
							 | 
						      <li><strong>Labels:</strong> predicted phoneme sequence (space-separated)</li> | 
					
					
						
						| 
							 | 
						    </ul> | 
					
					
						
						| 
							 | 
						    <pre> | 
					
					
						
						| 
							 | 
						ID,Labels | 
					
					
						
						| 
							 | 
						0000_0001, i n n a m a a y a … | 
					
					
						
						| 
							 | 
						0000_0002, m a a n a n s a … | 
					
					
						
						| 
							 | 
						…   | 
					
					
						
						| 
							 | 
						    </pre> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      <strong>Note:</strong> no extra spaces, single CSV, no archives. | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h2>Evaluation Criteria</h2> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      IqraEval Leaderboard is based on phoneme-level <strong>F1-score</strong>.   | 
					
					
						
						| 
							 | 
						      We use a hierarchical evaluation (detection + diagnostic) per <a href="https://arxiv.org/pdf/2310.13974" target="_blank">MDD Overview</a>. | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						    <ul> | 
					
					
						
						| 
							 | 
						      <li><em><strong>What is said</strong></em>: annotated phoneme sequence</li> | 
					
					
						
						| 
							 | 
						      <li><em><strong>What is predicted</strong></em>: model output</li> | 
					
					
						
						| 
							 | 
						      <li><em><strong>What should have been said</strong></em>: reference sequence</li> | 
					
					
						
						| 
							 | 
						    </ul> | 
					
					
						
						| 
							 | 
						    <p>From these we compute:</p> | 
					
					
						
						| 
							 | 
						    <ul> | 
					
					
						
						| 
							 | 
						      <li><strong>TA:</strong> correct phonemes accepted</li> | 
					
					
						
						| 
							 | 
						      <li><strong>TR:</strong> mispronunciations correctly detected</li> | 
					
					
						
						| 
							 | 
						      <li><strong>FR:</strong> correct phonemes flagged as errors</li> | 
					
					
						
						| 
							 | 
						      <li><strong>FA:</strong> mispronunciations missed</li> | 
					
					
						
						| 
							 | 
						    </ul> | 
					
					
						
						| 
							 | 
						    <p>Rates:</p> | 
					
					
						
						| 
							 | 
						    <ul> | 
					
					
						
						| 
							 | 
						      <li><strong>FRR:</strong> FR/(TA+FR)</li> | 
					
					
						
						| 
							 | 
						      <li><strong>FAR:</strong> FA/(FA+TR)</li> | 
					
					
						
						| 
							 | 
						      <li><strong>DER:</strong> DE/(CD+DE)</li> | 
					
					
						
						| 
							 | 
						    </ul> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      Plus standard Precision, Recall, F1 for detection: | 
					
					
						
						| 
							 | 
						      <ul> | 
					
					
						
						| 
							 | 
						        <li>Precision = TR/(TR+FR)</li> | 
					
					
						
						| 
							 | 
						        <li>Recall = TR/(TR+FA)</li> | 
					
					
						
						| 
							 | 
						        <li>F1 = 2·P·R/(P+R)</li> | 
					
					
						
						| 
							 | 
						      </ul> | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h2>Potential Research Directions</h2> | 
					
					
						
						| 
							 | 
						    <ol> | 
					
					
						
						| 
							 | 
						      <li><strong>Advanced Models:</strong> fine-tune Wav2Vec2.0, HuBERT on Arabic/Quranic speech.</li> | 
					
					
						
						| 
							 | 
						      <li><strong>Data Augmentation:</strong> use SpeechBlender to synthesize mispronunciations.</li> | 
					
					
						
						| 
							 | 
						      <li><strong>Pattern Analysis:</strong> statistical study of QuranMB errors to guide training.</li> | 
					
					
						
						| 
							 | 
						    </ol> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h2>Registration</h2> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      Teams and individual participants must register to gain access to the test set. Please complete the registration form using the link below: | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      <a href="https://docs.google.com/forms/d/e/1FAIpQLSf8qVKV1C9JVY7gUloQRLX8iMBUaZNFtYHBcqG6obJU0JauGw/viewform" target="_blank">Registration Form</a> | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      Registration opens on June 10, 2025. | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h2>Future Updates</h2> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						        Further details on the openset leaderboard submission will be posted on the shared task website (June 15, 2025). Stay tuned! | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h2>Contact and Support</h2> | 
					
					
						
						| 
							 | 
						    <p> | 
					
					
						
						| 
							 | 
						      For inquiries and support, reach out to the task coordinators at  | 
					
					
						
						| 
							 | 
						      <a href="mailto:[email protected]">[email protected]</a>. | 
					
					
						
						| 
							 | 
						    </p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    <h2>References</h2> | 
					
					
						
						| 
							 | 
						    <ul> | 
					
					
						
						| 
							 | 
						      <li>El Kheir Y. et al., “SpeechBlender: Speech Augmentation Framework for Mispronunciation Data Generation,” arXiv:2211.00923, 2022.</li> | 
					
					
						
						| 
							 | 
						      <li>Al Harere A. & Al Jallad K., “Mispronunciation Detection of Basic Quranic Recitation Rules using Deep Learning,” arXiv:2305.06429, 2023.</li> | 
					
					
						
						| 
							 | 
						      <li>Aly S. A. et al., “ASMDD: Arabic Speech Mispronunciation Detection Dataset,” arXiv:2111.01136, 2021.</li> | 
					
					
						
						| 
							 | 
						      <li>Moustafa A. & Aly S. A., “Efficient Voice Identification Using Wav2Vec2.0 and HuBERT…,” arXiv:2111.06331, 2021.</li> | 
					
					
						
						| 
							 | 
						      <li>El Kheir Y. et al., “Automatic Pronunciation Assessment – A Review,” arXiv:2310.13974, 2021.</li> | 
					
					
						
						| 
							 | 
						    </ul> | 
					
					
						
						| 
							 | 
						  </div> | 
					
					
						
						| 
							 | 
						</body> | 
					
					
						
						| 
							 | 
						</html> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 |