Update TrendAnalysis.py
Browse files- TrendAnalysis.py +1044 -1044
TrendAnalysis.py
CHANGED
@@ -1,1044 +1,1044 @@
|
|
1 |
-
from motor.motor_asyncio import AsyncIOMotorClient
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
import re
|
5 |
-
import json
|
6 |
-
import umap
|
7 |
-
import plotly.io as pio
|
8 |
-
import hdbscan
|
9 |
-
from bertopic import BERTopic
|
10 |
-
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
|
11 |
-
from skopt import gp_minimize
|
12 |
-
from sentence_transformers import SentenceTransformer
|
13 |
-
import torch
|
14 |
-
import random
|
15 |
-
import multiprocessing
|
16 |
-
from sklearn.feature_extraction.text import CountVectorizer
|
17 |
-
from bertopic.vectorizers import ClassTfidfTransformer
|
18 |
-
from bertopic.representation import KeyBERTInspired
|
19 |
-
import optuna
|
20 |
-
import pandas as pd
|
21 |
-
import dash
|
22 |
-
from dash import dcc, html, Input, Output, State
|
23 |
-
import plotly.graph_objects as go
|
24 |
-
import plotly.express as px
|
25 |
-
import numpy as np
|
26 |
-
import dash_bootstrap_components as dbc
|
27 |
-
from fastapi import HTTPException, APIRouter, Request
|
28 |
-
from pydantic import BaseModel
|
29 |
-
import threading
|
30 |
-
import time
|
31 |
-
import webbrowser
|
32 |
-
import asyncio
|
33 |
-
|
34 |
-
|
35 |
-
# Set seed for reproducibility
|
36 |
-
def set_seed(seed=42):
|
37 |
-
random.seed(seed)
|
38 |
-
np.random.seed(seed)
|
39 |
-
torch.manual_seed(seed)
|
40 |
-
torch.cuda.manual_seed_all(seed)
|
41 |
-
torch.backends.cudnn.deterministic = True
|
42 |
-
torch.backends.cudnn.benchmark = False
|
43 |
-
|
44 |
-
|
45 |
-
if __name__ == "__main__":
|
46 |
-
set_seed(42)
|
47 |
-
multiprocessing.freeze_support()
|
48 |
-
|
49 |
-
global TitleName
|
50 |
-
TitleName = "Dashboard"
|
51 |
-
router = APIRouter()
|
52 |
-
|
53 |
-
|
54 |
-
class TrendAnalysisRequest(BaseModel):
|
55 |
-
userId: str
|
56 |
-
topic: str
|
57 |
-
year: str = None
|
58 |
-
page: int = 0
|
59 |
-
|
60 |
-
|
61 |
-
async def fetch_papers_with_pagination(request: Request, userId: str, topic: str, year: str = None, page: int = 0):
|
62 |
-
# Build the query filter
|
63 |
-
query_filter = {"userId": userId, "topic": topic}
|
64 |
-
if year:
|
65 |
-
query_filter["year"] = year
|
66 |
-
|
67 |
-
# Count total matching documents
|
68 |
-
count_pipeline = [
|
69 |
-
{"$match": query_filter},
|
70 |
-
{"$unwind": "$papers"},
|
71 |
-
{"$count": "total_papers"}
|
72 |
-
]
|
73 |
-
collection = request.app.state.collection
|
74 |
-
count_result = await collection.aggregate(count_pipeline).to_list(length=1)
|
75 |
-
total_papers = count_result[0]['total_papers'] if count_result else 0
|
76 |
-
|
77 |
-
print(f"Total papers matching criteria: {total_papers}")
|
78 |
-
|
79 |
-
# If no papers found, return empty result
|
80 |
-
if total_papers == 0:
|
81 |
-
return pd.DataFrame(), 0, 0, 0, 0
|
82 |
-
|
83 |
-
# Define pagination constants
|
84 |
-
papers_per_page = 200
|
85 |
-
min_papers_last_page = 50
|
86 |
-
|
87 |
-
# Calculate basic pagination
|
88 |
-
if total_papers <= papers_per_page:
|
89 |
-
# Simple case: all papers fit in one page
|
90 |
-
total_pages = 1
|
91 |
-
else:
|
92 |
-
# Multiple pages case
|
93 |
-
full_pages = total_papers // papers_per_page
|
94 |
-
remaining = total_papers % papers_per_page
|
95 |
-
|
96 |
-
if remaining >= min_papers_last_page:
|
97 |
-
# If remaining papers meet minimum threshold, create a separate page
|
98 |
-
total_pages = full_pages + 1
|
99 |
-
else:
|
100 |
-
# Otherwise, we'll have exactly 'full_pages' pages
|
101 |
-
# The remaining papers will be added to the last page
|
102 |
-
total_pages = full_pages
|
103 |
-
|
104 |
-
# Ensure page is within valid range
|
105 |
-
if page >= total_pages:
|
106 |
-
return pd.DataFrame(), 0, total_pages, 0, total_papers
|
107 |
-
|
108 |
-
# Calculate skip and limit based on page number
|
109 |
-
if total_pages == 1:
|
110 |
-
# Only one page - return all papers
|
111 |
-
skip = 0
|
112 |
-
limit = total_papers
|
113 |
-
elif page < total_pages - 1:
|
114 |
-
# Regular full page
|
115 |
-
skip = page * papers_per_page
|
116 |
-
limit = papers_per_page
|
117 |
-
else:
|
118 |
-
# Last page - might include remaining papers
|
119 |
-
remaining = total_papers % papers_per_page
|
120 |
-
|
121 |
-
if remaining >= min_papers_last_page or remaining == 0:
|
122 |
-
# Last page with either enough remaining papers or perfectly divided
|
123 |
-
skip = page * papers_per_page
|
124 |
-
limit = remaining if remaining > 0 else papers_per_page
|
125 |
-
else:
|
126 |
-
# Last page with remaining papers that don't meet minimum threshold
|
127 |
-
# We distribute by adding them to the last page
|
128 |
-
skip = (total_pages - 1) * papers_per_page
|
129 |
-
limit = papers_per_page + remaining
|
130 |
-
|
131 |
-
print(f"Pagination: Page {page + 1} of {total_pages}, Skip {skip}, Limit {limit}")
|
132 |
-
|
133 |
-
# MongoDB aggregation pipeline
|
134 |
-
pipeline = [
|
135 |
-
{"$match": query_filter},
|
136 |
-
{"$unwind": "$papers"},
|
137 |
-
{"$replaceRoot": {"newRoot": "$papers"}},
|
138 |
-
{"$project": {
|
139 |
-
"_id": 0,
|
140 |
-
"paperId": 1,
|
141 |
-
"url": 1,
|
142 |
-
"title": 1,
|
143 |
-
"abstract": 1,
|
144 |
-
"citationCount": 1,
|
145 |
-
"influentialCitationCount": 1,
|
146 |
-
"embedding": 1,
|
147 |
-
"publicationDate": 1,
|
148 |
-
"authors": 1
|
149 |
-
}},
|
150 |
-
{"$sort": {"publicationDate": 1}},
|
151 |
-
{"$skip": skip},
|
152 |
-
{"$limit": limit}
|
153 |
-
]
|
154 |
-
|
155 |
-
# Execute the aggregation pipeline
|
156 |
-
cursor = collection.aggregate(pipeline)
|
157 |
-
papers = await cursor.to_list(None)
|
158 |
-
|
159 |
-
papers_count = len(papers)
|
160 |
-
print(f"Papers Retrieved: {papers_count}")
|
161 |
-
|
162 |
-
# Convert to DataFrame
|
163 |
-
df = pd.DataFrame(papers)
|
164 |
-
df = df.sort_values(by="publicationDate")
|
165 |
-
print(df[["paperId", "publicationDate"]].head(10))
|
166 |
-
|
167 |
-
return df, page, total_pages, papers_count, total_papers
|
168 |
-
|
169 |
-
|
170 |
-
# Preprocessing function
|
171 |
-
def clean_text(text):
|
172 |
-
text = str(text).lower()
|
173 |
-
text = re.sub(r"[^a-zA-Z0-9\s]", "", text)
|
174 |
-
return ' '.join([word for word in text.split() if word not in ENGLISH_STOP_WORDS])
|
175 |
-
|
176 |
-
|
177 |
-
# Adaptive clustering and topic modeling
|
178 |
-
def perform_trend_analysis(df):
|
179 |
-
# Convert embeddings
|
180 |
-
def convert_embedding(embedding):
|
181 |
-
return np.array(embedding["vector"], dtype=np.float64) if isinstance(embedding,
|
182 |
-
dict) and "vector" in embedding else None
|
183 |
-
|
184 |
-
df["embedding"] = df["embedding"].apply(convert_embedding)
|
185 |
-
df = df.dropna(subset=["embedding"])
|
186 |
-
|
187 |
-
if df.empty:
|
188 |
-
return df, {}
|
189 |
-
|
190 |
-
df["clean_text"] = (df["abstract"].fillna("")).apply(clean_text)
|
191 |
-
|
192 |
-
def objective(trial):
|
193 |
-
umap_n_components = trial.suggest_int("umap_n_components", 1, 12)
|
194 |
-
umap_min_dist = trial.suggest_float("umap_min_dist", 0.1, 0.8)
|
195 |
-
umap_n_neighbors = trial.suggest_int("umap_n_neighbors", 2, 12)
|
196 |
-
hdbscan_min_cluster_size = trial.suggest_int("hdbscan_min_cluster_size", 2, 10)
|
197 |
-
hdbscan_min_samples = trial.suggest_int("hdbscan_min_samples", 1, 10)
|
198 |
-
hdbscan_cluster_selection_epsilon = trial.suggest_float("hdbscan_cluster_selection_epsilon", 0.2, 0.8)
|
199 |
-
hdbscan_cluster_selection_method = trial.suggest_categorical("hdbscan_cluster_selection_method",
|
200 |
-
["eom", "leaf"])
|
201 |
-
|
202 |
-
reducer_high_dim = umap.UMAP(
|
203 |
-
n_components=umap_n_components,
|
204 |
-
random_state=42,
|
205 |
-
min_dist=umap_min_dist,
|
206 |
-
n_neighbors=umap_n_neighbors,
|
207 |
-
metric="cosine"
|
208 |
-
)
|
209 |
-
reduced_embeddings_high_dim = reducer_high_dim.fit_transform(np.vstack(df["embedding"].values)).astype(
|
210 |
-
np.float64)
|
211 |
-
|
212 |
-
clusterer = hdbscan.HDBSCAN(
|
213 |
-
min_cluster_size=hdbscan_min_cluster_size,
|
214 |
-
min_samples=hdbscan_min_samples,
|
215 |
-
cluster_selection_epsilon=hdbscan_cluster_selection_epsilon,
|
216 |
-
cluster_selection_method=hdbscan_cluster_selection_method,
|
217 |
-
prediction_data=True,
|
218 |
-
core_dist_n_jobs=1
|
219 |
-
)
|
220 |
-
labels = clusterer.fit_predict(reduced_embeddings_high_dim)
|
221 |
-
|
222 |
-
if len(set(labels)) > 1:
|
223 |
-
dbcv_score = hdbscan.validity.validity_index(reduced_embeddings_high_dim, labels)
|
224 |
-
else:
|
225 |
-
dbcv_score = -np.inf
|
226 |
-
|
227 |
-
return dbcv_score
|
228 |
-
|
229 |
-
study = optuna.create_study(
|
230 |
-
direction="maximize",
|
231 |
-
sampler=optuna.samplers.TPESampler(seed=42))
|
232 |
-
study.optimize(objective, n_trials=100)
|
233 |
-
|
234 |
-
best_params = study.best_params
|
235 |
-
umap_model = umap.UMAP(
|
236 |
-
n_components=best_params["umap_n_components"],
|
237 |
-
random_state=42,
|
238 |
-
min_dist=best_params["umap_min_dist"],
|
239 |
-
n_neighbors=best_params["umap_n_neighbors"],
|
240 |
-
metric="cosine"
|
241 |
-
)
|
242 |
-
hdbscan_model = hdbscan.HDBSCAN(
|
243 |
-
min_cluster_size=best_params["hdbscan_min_cluster_size"],
|
244 |
-
min_samples=best_params["hdbscan_min_samples"],
|
245 |
-
cluster_selection_epsilon=best_params["hdbscan_cluster_selection_epsilon"],
|
246 |
-
cluster_selection_method=best_params["hdbscan_cluster_selection_method"],
|
247 |
-
prediction_data=True,
|
248 |
-
core_dist_n_jobs=1
|
249 |
-
)
|
250 |
-
|
251 |
-
vectorizer = CountVectorizer(
|
252 |
-
stop_words=list(ENGLISH_STOP_WORDS),
|
253 |
-
ngram_range=(2, 3)
|
254 |
-
)
|
255 |
-
|
256 |
-
representation_model = KeyBERTInspired()
|
257 |
-
embedding_model = SentenceTransformer("allenai/specter")
|
258 |
-
topic_model = BERTopic(
|
259 |
-
vectorizer_model=vectorizer,
|
260 |
-
umap_model=umap_model,
|
261 |
-
hdbscan_model=hdbscan_model,
|
262 |
-
embedding_model=embedding_model,
|
263 |
-
nr_topics='auto',
|
264 |
-
top_n_words=8,
|
265 |
-
representation_model=representation_model,
|
266 |
-
ctfidf_model=ClassTfidfTransformer(reduce_frequent_words=False, bm25_weighting=True)
|
267 |
-
)
|
268 |
-
|
269 |
-
topics, _ = topic_model.fit_transform(df["clean_text"], np.vstack(df["embedding"].values))
|
270 |
-
df["topic"] = topics
|
271 |
-
topic_labels = {t: " | ".join([word for word, _ in topic_model.get_topic(t)][:8]) for t in set(topics)}
|
272 |
-
|
273 |
-
reduced_embeddings_2d = umap.UMAP(n_components=2, random_state=42).fit_transform(
|
274 |
-
np.vstack(df["embedding"].values)).astype(np.float64)
|
275 |
-
df["x"] = reduced_embeddings_2d[:, 0]
|
276 |
-
df["y"] = reduced_embeddings_2d[:, 1]
|
277 |
-
df["topic_label"] = df["topic"].map(topic_labels)
|
278 |
-
|
279 |
-
return df, topic_labels
|
280 |
-
|
281 |
-
|
282 |
-
def build_dashboard(df, titleNm, topic_year):
|
283 |
-
TitleName = titleNm + "_" + topic_year
|
284 |
-
color_palette = px.colors.qualitative.Vivid
|
285 |
-
unique_topics = sorted(df["topic"].unique())
|
286 |
-
color_map = {topic: color_palette[i % len(color_palette)] for i, topic in enumerate(unique_topics)}
|
287 |
-
|
288 |
-
# Map colors to topics
|
289 |
-
df["color"] = df["topic"].map(color_map)
|
290 |
-
|
291 |
-
# Calculate the number of papers in each cluster
|
292 |
-
cluster_sizes = df.groupby("topic").size().reset_index(name="paper_count")
|
293 |
-
df = df.merge(cluster_sizes, on="topic", how="left")
|
294 |
-
|
295 |
-
# Improved marker scaling with a better range
|
296 |
-
min_size = 50
|
297 |
-
max_size = 140
|
298 |
-
df["marker_size"] = ((df["paper_count"] - df["paper_count"].min()) /
|
299 |
-
(df["paper_count"].max() - df["paper_count"].min())) * (max_size - min_size) + min_size
|
300 |
-
|
301 |
-
# Add log-transformed citation and influence columns
|
302 |
-
df["log_citation"] = np.log1p(df["citationCount"])
|
303 |
-
df["log_influence"] = np.log1p(df["influentialCitationCount"])
|
304 |
-
|
305 |
-
# Bayesian shrinkage for citations and influence
|
306 |
-
global_median_citation = df["log_citation"].median()
|
307 |
-
global_median_influence = df["log_influence"].median()
|
308 |
-
C = 10 # Shrinkage constant
|
309 |
-
|
310 |
-
def bayesian_shrinkage(group, global_median, C):
|
311 |
-
return (group.sum() + C * global_median) / (len(group) + C)
|
312 |
-
|
313 |
-
adjusted_citations = df.groupby("topic")["log_citation"].apply(
|
314 |
-
lambda x: bayesian_shrinkage(x, global_median_citation, C))
|
315 |
-
adjusted_influence = df.groupby("topic")["log_influence"].apply(
|
316 |
-
lambda x: bayesian_shrinkage(x, global_median_influence, C))
|
317 |
-
|
318 |
-
# Merge adjusted metrics back into the dataframe
|
319 |
-
df = df.merge(adjusted_citations.rename("adjusted_citation"), on="topic")
|
320 |
-
df = df.merge(adjusted_influence.rename("adjusted_influence"), on="topic")
|
321 |
-
|
322 |
-
# Calculate global percentiles for thresholds
|
323 |
-
citation_25th = df["adjusted_citation"].quantile(0.25)
|
324 |
-
citation_75th = df["adjusted_citation"].quantile(0.75)
|
325 |
-
influence_25th = df["adjusted_influence"].quantile(0.25)
|
326 |
-
influence_75th = df["adjusted_influence"].quantile(0.75)
|
327 |
-
|
328 |
-
# Enhanced theme classification with more distinct emojis
|
329 |
-
def classify_theme(row):
|
330 |
-
if row["adjusted_citation"] >= citation_75th and row["adjusted_influence"] >= influence_75th:
|
331 |
-
return "🔥 Hot Topic"
|
332 |
-
elif row["adjusted_citation"] <= citation_25th and row["adjusted_influence"] >= influence_75th:
|
333 |
-
return "💎 Gap Opportunity"
|
334 |
-
elif row["adjusted_citation"] >= citation_75th and row["adjusted_influence"] <= influence_25th:
|
335 |
-
return "⚠️ Risky Theme"
|
336 |
-
else:
|
337 |
-
return "🔄 Neutral"
|
338 |
-
|
339 |
-
df["theme"] = df.apply(classify_theme, axis=1)
|
340 |
-
|
341 |
-
# Initialize the Dash app with an improved Bootstrap theme
|
342 |
-
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.DARKLY]) # DARKLY for a sleek dark theme
|
343 |
-
|
344 |
-
# Create a more visually appealing figure
|
345 |
-
fig = go.Figure()
|
346 |
-
|
347 |
-
# Add subtle grid lines for reference
|
348 |
-
fig.update_xaxes(
|
349 |
-
showgrid=True,
|
350 |
-
gridwidth=0.1,
|
351 |
-
gridcolor='rgba(255, 255, 255, 0.05)',
|
352 |
-
zeroline=False
|
353 |
-
)
|
354 |
-
fig.update_yaxes(
|
355 |
-
showgrid=True,
|
356 |
-
gridwidth=0.1,
|
357 |
-
gridcolor='rgba(255, 255, 255, 0.05)',
|
358 |
-
zeroline=False
|
359 |
-
)
|
360 |
-
|
361 |
-
for topic in unique_topics:
|
362 |
-
topic_data = df[df["topic"] == topic]
|
363 |
-
|
364 |
-
# Get cluster center
|
365 |
-
center_x = topic_data["x"].mean()
|
366 |
-
center_y = topic_data["y"].mean()
|
367 |
-
|
368 |
-
# Get label
|
369 |
-
full_topic_formatted = topic_data['topic_label'].iloc[
|
370 |
-
0] if 'topic_label' in topic_data.columns else f"Cluster {topic}"
|
371 |
-
|
372 |
-
# Add a subtle glow effect with a larger outer circle
|
373 |
-
fig.add_trace(
|
374 |
-
go.Scatter(
|
375 |
-
x=[center_x],
|
376 |
-
y=[center_y],
|
377 |
-
mode="markers",
|
378 |
-
marker=dict(
|
379 |
-
color=color_map[topic],
|
380 |
-
size=topic_data["marker_size"].iloc[0] * 1.2, # Slightly larger for glow effect
|
381 |
-
opacity=0.3,
|
382 |
-
line=dict(width=0),
|
383 |
-
symbol="circle",
|
384 |
-
),
|
385 |
-
showlegend=False,
|
386 |
-
hoverinfo="none",
|
387 |
-
)
|
388 |
-
)
|
389 |
-
|
390 |
-
# Add main cluster circle with enhanced styling
|
391 |
-
fig.add_trace(
|
392 |
-
go.Scatter(
|
393 |
-
x=[center_x],
|
394 |
-
y=[center_y],
|
395 |
-
mode="markers+text",
|
396 |
-
marker=dict(
|
397 |
-
color=color_map[topic],
|
398 |
-
size=topic_data["marker_size"].iloc[0],
|
399 |
-
opacity=0.85,
|
400 |
-
line=dict(width=2, color="white"),
|
401 |
-
symbol="circle",
|
402 |
-
),
|
403 |
-
text=[f"{topic}"],
|
404 |
-
textposition="middle center",
|
405 |
-
textfont=dict(
|
406 |
-
family="Arial Black",
|
407 |
-
size=16,
|
408 |
-
color="white"
|
409 |
-
),
|
410 |
-
name=f"{topic}",
|
411 |
-
hovertemplate=(
|
412 |
-
"<b>Cluster ID:</b> %{text}<br>" +
|
413 |
-
"<b>Name:</b><br>" + full_topic_formatted + "<br>" +
|
414 |
-
"<b>Papers:</b> " + str(topic_data["paper_count"].iloc[0]) + "<br>" +
|
415 |
-
"<b>Popularity:</b> " + (
|
416 |
-
"🔼 High" if topic_data["adjusted_citation"].iloc[0] >= citation_75th else "🔽 Low") +
|
417 |
-
f" (Adjusted Citation: {topic_data['adjusted_citation'].iloc[0]:.2f})<br>" +
|
418 |
-
"<b>Impactfulness:</b> " + (
|
419 |
-
"🔼 High" if topic_data["adjusted_influence"].iloc[0] >= influence_75th else "🔽 Low") +
|
420 |
-
f" (Adjusted Influence: {topic_data['adjusted_influence'].iloc[0]:.2f})<br>" +
|
421 |
-
"<b>Theme:</b> " + topic_data["theme"].iloc[0] +
|
422 |
-
"<extra></extra>"
|
423 |
-
),
|
424 |
-
customdata=[[topic]],
|
425 |
-
)
|
426 |
-
)
|
427 |
-
|
428 |
-
# Add an aesthetic background with gradient
|
429 |
-
fig.update_layout(
|
430 |
-
shapes=[
|
431 |
-
# Improved gradient background
|
432 |
-
dict(
|
433 |
-
type="rect",
|
434 |
-
xref="paper",
|
435 |
-
yref="paper",
|
436 |
-
x0=0,
|
437 |
-
y0=0,
|
438 |
-
x1=1,
|
439 |
-
y1=1,
|
440 |
-
fillcolor="rgba(0, 0, 40, 0.95)",
|
441 |
-
line_width=0,
|
442 |
-
layer="below"
|
443 |
-
),
|
444 |
-
# Add a subtle radial gradient effect
|
445 |
-
dict(
|
446 |
-
type="circle",
|
447 |
-
xref="paper",
|
448 |
-
yref="paper",
|
449 |
-
x0=0.3,
|
450 |
-
y0=0.3,
|
451 |
-
x1=0.7,
|
452 |
-
y1=0.7,
|
453 |
-
fillcolor="rgba(50, 50, 120, 0.2)",
|
454 |
-
line_width=0,
|
455 |
-
layer="below"
|
456 |
-
)
|
457 |
-
],
|
458 |
-
template="plotly_dark",
|
459 |
-
title={
|
460 |
-
'text': f"<b>{TitleName.title()}</b>",
|
461 |
-
'y': 0.97,
|
462 |
-
'x': 0.5,
|
463 |
-
'xanchor': 'center',
|
464 |
-
'yanchor': 'top',
|
465 |
-
'font': dict(
|
466 |
-
family="Arial Black",
|
467 |
-
size=28,
|
468 |
-
color="white",
|
469 |
-
),
|
470 |
-
'xref': 'paper',
|
471 |
-
'yref': 'paper',
|
472 |
-
},
|
473 |
-
margin=dict(l=40, r=40, b=150, t=100),
|
474 |
-
hovermode="closest",
|
475 |
-
xaxis=dict(showticklabels=False),
|
476 |
-
yaxis=dict(showticklabels=False),
|
477 |
-
paper_bgcolor="rgba(0,0,0,0)",
|
478 |
-
plot_bgcolor="rgba(0,0,0,0)",
|
479 |
-
dragmode="pan",
|
480 |
-
legend=dict(
|
481 |
-
orientation="h",
|
482 |
-
yanchor="bottom",
|
483 |
-
y=-0.15,
|
484 |
-
xanchor="center",
|
485 |
-
x=0.5,
|
486 |
-
bgcolor="rgba(30,30,60,0.5)",
|
487 |
-
bordercolor="rgba(255,255,255,0.2)",
|
488 |
-
borderwidth=1
|
489 |
-
),
|
490 |
-
)
|
491 |
-
|
492 |
-
# Add subtle animation options
|
493 |
-
fig.update_layout(
|
494 |
-
updatemenus=[
|
495 |
-
dict(
|
496 |
-
type="buttons",
|
497 |
-
showactive=False,
|
498 |
-
buttons=[
|
499 |
-
dict(
|
500 |
-
label="Reset View",
|
501 |
-
method="relayout",
|
502 |
-
args=[{"xaxis.range": None, "yaxis.range": None}]
|
503 |
-
),
|
504 |
-
],
|
505 |
-
x=0.05,
|
506 |
-
y=0.05,
|
507 |
-
xanchor="left",
|
508 |
-
yanchor="bottom",
|
509 |
-
bgcolor="rgba(50,50,80,0.7)",
|
510 |
-
bordercolor="rgba(255,255,255,0.2)",
|
511 |
-
)
|
512 |
-
]
|
513 |
-
)
|
514 |
-
|
515 |
-
# Enhanced app layout with modern design elements
|
516 |
-
app.layout = dbc.Container(
|
517 |
-
fluid=True,
|
518 |
-
style={
|
519 |
-
"backgroundColor": "#111122",
|
520 |
-
"minHeight": "100vh",
|
521 |
-
"height": "100%",
|
522 |
-
"width": "100%",
|
523 |
-
"backgroundImage": "linear-gradient(135deg, #111122 0%, #15162c 100%)",
|
524 |
-
"padding": "20px"
|
525 |
-
},
|
526 |
-
children=[
|
527 |
-
dbc.Row([
|
528 |
-
dbc.Col(html.H1(
|
529 |
-
"Trend Analysis Dashboard ",
|
530 |
-
style={
|
531 |
-
"textAlign": "center",
|
532 |
-
"color": "white",
|
533 |
-
"marginBottom": "5px",
|
534 |
-
"fontFamily": "Arial Black",
|
535 |
-
"textShadow": "2px 2px 8px rgba(0,0,0,0.7)",
|
536 |
-
"letterSpacing": "2px",
|
537 |
-
"fontSize": "42px",
|
538 |
-
"background": "linear-gradient(135deg, #790091 0%, #565cd5 100%)",
|
539 |
-
"WebkitBackgroundClip": "text",
|
540 |
-
"WebkitTextFillColor": "transparent",
|
541 |
-
"paddingTop": "10px"
|
542 |
-
}
|
543 |
-
), width=10),
|
544 |
-
|
545 |
-
dbc.Col([
|
546 |
-
html.Button(
|
547 |
-
[
|
548 |
-
html.I(className="fas fa-download mr-2"),
|
549 |
-
" Save Dashboard"
|
550 |
-
],
|
551 |
-
id="download-button",
|
552 |
-
className="btn btn-outline-light",
|
553 |
-
style={
|
554 |
-
"marginTop": "10px",
|
555 |
-
"backgroundColor": "rgba(80, 80, 150, 0.4)",
|
556 |
-
"border": "1px solid rgba(100, 100, 200, 0.5)",
|
557 |
-
"borderRadius": "8px",
|
558 |
-
"padding": "8px 15px",
|
559 |
-
"boxShadow": "0px 4px 8px rgba(0, 0, 0, 0.3)",
|
560 |
-
"transition": "all 0.3s ease",
|
561 |
-
"fontSize": "14px",
|
562 |
-
"fontWeight": "bold"
|
563 |
-
}
|
564 |
-
),
|
565 |
-
# Add the download component
|
566 |
-
dcc.Download(id="download-dashboard")
|
567 |
-
], width=2),
|
568 |
-
|
569 |
-
dbc.Col(html.P(
|
570 |
-
"Interactive visualization of research topics and their relationships",
|
571 |
-
style={
|
572 |
-
"textAlign": "center",
|
573 |
-
"color": "#aaddff",
|
574 |
-
"marginBottom": "15px",
|
575 |
-
"fontStyle": "italic",
|
576 |
-
"fontSize": "16px",
|
577 |
-
"fontWeight": "300",
|
578 |
-
"letterSpacing": "0.5px",
|
579 |
-
"textShadow": "1px 1px 3px rgba(0,0,0,0.5)",
|
580 |
-
}
|
581 |
-
), width=12),
|
582 |
-
]),
|
583 |
-
|
584 |
-
dbc.Row([
|
585 |
-
dbc.Col(
|
586 |
-
dbc.Card(
|
587 |
-
dbc.CardBody([
|
588 |
-
dcc.Graph(
|
589 |
-
id="cluster-graph",
|
590 |
-
figure=fig,
|
591 |
-
config={
|
592 |
-
"scrollZoom": True,
|
593 |
-
"displayModeBar": True,
|
594 |
-
"modeBarButtonsToRemove": ["select2d", "lasso2d"]
|
595 |
-
}, style={"height": "80vh", "min-height": "800px"}
|
596 |
-
)
|
597 |
-
], style={"height": "80vh", "min-height": "800px"}),
|
598 |
-
style={
|
599 |
-
"backgroundColor": "rgba(20, 20, 40, 0.7)",
|
600 |
-
"borderRadius": "15px",
|
601 |
-
"boxShadow": "0px 10px 30px rgba(0, 0, 0, 0.5)",
|
602 |
-
"border": "1px solid rgba(100, 100, 200, 0.3)",
|
603 |
-
"height": "80vh",
|
604 |
-
"min-height": "800px" # Ensure minimum height
|
605 |
-
}
|
606 |
-
),
|
607 |
-
width=9
|
608 |
-
),
|
609 |
-
|
610 |
-
dbc.Col(
|
611 |
-
dbc.Card(
|
612 |
-
dbc.CardBody([
|
613 |
-
html.H3("Paper List", style={
|
614 |
-
"textAlign": "center",
|
615 |
-
"marginBottom": "15px",
|
616 |
-
"color": "#ffffff",
|
617 |
-
"fontFamily": "Arial",
|
618 |
-
"fontWeight": "bold",
|
619 |
-
"textShadow": "1px 1px 3px rgba(0,0,0,0.3)"
|
620 |
-
}),
|
621 |
-
html.Hr(style={"borderColor": "rgba(100, 100, 200, 0.3)", "margin": "10px 0 20px 0"}),
|
622 |
-
html.Div(
|
623 |
-
id="paper-list",
|
624 |
-
style={
|
625 |
-
"overflowY": "auto",
|
626 |
-
"height": "700px",
|
627 |
-
"padding": "5px"
|
628 |
-
},
|
629 |
-
children=html.Div([
|
630 |
-
html.Div(
|
631 |
-
html.I(className="fas fa-mouse-pointer", style={"marginRight": "10px"}),
|
632 |
-
style={"textAlign": "center", "fontSize": "24px", "marginBottom": "10px",
|
633 |
-
"color": "#7f8fa6"}
|
634 |
-
),
|
635 |
-
html.P("Click on a cluster to view its papers",
|
636 |
-
style={"textAlign": "center", "color": "#7f8fa6"})
|
637 |
-
])
|
638 |
-
),
|
639 |
-
],
|
640 |
-
style={
|
641 |
-
"backgroundColor": "rgba(30, 30, 50, 0.8)",
|
642 |
-
"borderRadius": "15px",
|
643 |
-
"padding": "20px",
|
644 |
-
"height": "100%"
|
645 |
-
}),
|
646 |
-
style={
|
647 |
-
"height": "800px",
|
648 |
-
"boxShadow": "0px 10px 30px rgba(0, 0, 0, 0.5)",
|
649 |
-
"border": "1px solid rgba(100, 100, 200, 0.3)",
|
650 |
-
"borderRadius": "15px"
|
651 |
-
}
|
652 |
-
),
|
653 |
-
width=3
|
654 |
-
),
|
655 |
-
], style={"marginTop": "20px"}),
|
656 |
-
|
657 |
-
# Add a footer with theme legend
|
658 |
-
dbc.Row([
|
659 |
-
dbc.Col(
|
660 |
-
dbc.Card(
|
661 |
-
dbc.CardBody([
|
662 |
-
html.H5("Theme Legend", style={"textAlign": "center", "marginBottom": "15px"}),
|
663 |
-
dbc.Row([
|
664 |
-
dbc.Col(html.Div([
|
665 |
-
html.Span("🔥", style={"fontSize": "20px", "marginRight": "10px"}),
|
666 |
-
"Hot Topic: High citations & high influence"
|
667 |
-
]), width=3),
|
668 |
-
dbc.Col(html.Div([
|
669 |
-
html.Span("💎", style={"fontSize": "20px", "marginRight": "10px"}),
|
670 |
-
"Gap Opportunity: Low citations but high influence"
|
671 |
-
]), width=3),
|
672 |
-
dbc.Col(html.Div([
|
673 |
-
html.Span("⚠️", style={"fontSize": "20px", "marginRight": "10px"}),
|
674 |
-
"Risky Theme: High citations but low influence"
|
675 |
-
]), width=3),
|
676 |
-
dbc.Col(html.Div([
|
677 |
-
html.Span("🔄", style={"fontSize": "20px", "marginRight": "10px"}),
|
678 |
-
"Neutral: Average citations and influence"
|
679 |
-
]), width=3),
|
680 |
-
])
|
681 |
-
]),
|
682 |
-
style={
|
683 |
-
"backgroundColor": "rgba(30, 30, 50, 0.8)",
|
684 |
-
"borderRadius": "15px",
|
685 |
-
"marginTop": "20px",
|
686 |
-
"boxShadow": "0px 5px 15px rgba(0, 0, 0, 0.3)",
|
687 |
-
"border": "1px solid rgba(100, 100, 200, 0.3)"
|
688 |
-
}
|
689 |
-
),
|
690 |
-
width=12
|
691 |
-
),
|
692 |
-
|
693 |
-
]),
|
694 |
-
|
695 |
-
dcc.Store(id="stored-figure", data=fig)
|
696 |
-
]
|
697 |
-
|
698 |
-
)
|
699 |
-
|
700 |
-
@app.callback(
|
701 |
-
Output("download-dashboard", "data"),
|
702 |
-
Input("download-button", "n_clicks"),
|
703 |
-
State("cluster-graph", "figure"),
|
704 |
-
prevent_initial_call=True
|
705 |
-
)
|
706 |
-
def download_dashboard(n_clicks, figure):
|
707 |
-
if n_clicks is None:
|
708 |
-
return None
|
709 |
-
|
710 |
-
# Save the figure as HTML with full plotly.js included
|
711 |
-
dashboard_html = pio.to_html(
|
712 |
-
figure,
|
713 |
-
full_html=True,
|
714 |
-
include_plotlyjs='cdn',
|
715 |
-
config={'responsive': True}
|
716 |
-
)
|
717 |
-
|
718 |
-
# Return the dashboard as an HTML file
|
719 |
-
return dict(
|
720 |
-
content=dashboard_html,
|
721 |
-
filename="research_dashboard.html",
|
722 |
-
type="text/html",
|
723 |
-
)
|
724 |
-
|
725 |
-
# Enhanced callback to update paper list with better styling
|
726 |
-
# Enhanced callback to update paper list with better styling
|
727 |
-
@app.callback(
|
728 |
-
Output("paper-list", "children"),
|
729 |
-
[Input("cluster-graph", "clickData")]
|
730 |
-
)
|
731 |
-
def update_paper_list(clickData):
|
732 |
-
if clickData is None:
|
733 |
-
return html.Div([
|
734 |
-
html.Div(
|
735 |
-
html.I(className="fas fa-mouse-pointer", style={"marginRight": "10px"}),
|
736 |
-
style={"textAlign": "center", "fontSize": "24px", "marginBottom": "10px", "color": "#7f8fa6"}
|
737 |
-
),
|
738 |
-
html.P("Click on a cluster to view its papers",
|
739 |
-
style={"textAlign": "center", "color": "#7f8fa6"})
|
740 |
-
])
|
741 |
-
|
742 |
-
# Extract the clicked cluster ID
|
743 |
-
try:
|
744 |
-
clicked_topic = clickData["points"][0]["customdata"][0]
|
745 |
-
|
746 |
-
# Get the color for this topic for styling consistency
|
747 |
-
topic_color = color_map[clicked_topic]
|
748 |
-
|
749 |
-
# Get the theme for this topic
|
750 |
-
topic_theme = df[df["topic"] == clicked_topic]["theme"].iloc[0]
|
751 |
-
|
752 |
-
except (KeyError, IndexError):
|
753 |
-
return html.Div("Error retrieving cluster data.", style={"textAlign": "center", "marginTop": "20px"})
|
754 |
-
|
755 |
-
# Filter papers in the clicked cluster - UPDATED to include titles AND urls
|
756 |
-
papers_in_cluster = df[df["topic"] == clicked_topic][["title", "url", "paperId"]]
|
757 |
-
|
758 |
-
if papers_in_cluster.empty:
|
759 |
-
return html.Div(f"No papers found for Cluster {clicked_topic}.",
|
760 |
-
style={"textAlign": "center", "marginTop": "20px"})
|
761 |
-
|
762 |
-
# Get topic label
|
763 |
-
topic_label = df[df["topic"] == clicked_topic]['topic_label'].iloc[
|
764 |
-
0] if 'topic_label' in df.columns else f"Cluster {clicked_topic}"
|
765 |
-
|
766 |
-
# Create an enhanced styled list of paper titles - UPDATED to make clickable
|
767 |
-
paper_list = []
|
768 |
-
for i, (_, paper) in enumerate(papers_in_cluster.iterrows()):
|
769 |
-
paper_url = paper["url"]
|
770 |
-
paper_title = paper["title"]
|
771 |
-
|
772 |
-
paper_list.append(
|
773 |
-
dbc.Card(
|
774 |
-
dbc.CardBody([
|
775 |
-
html.A(
|
776 |
-
html.H6(
|
777 |
-
f"{i + 1}. {paper_title}",
|
778 |
-
className="card-title",
|
779 |
-
style={
|
780 |
-
"fontSize": "14px",
|
781 |
-
"margin": "5px 0",
|
782 |
-
"fontWeight": "normal",
|
783 |
-
"lineHeight": "1.4",
|
784 |
-
"color": "#aaccff", # Blue color to indicate clickable link
|
785 |
-
"cursor": "pointer"
|
786 |
-
}
|
787 |
-
),
|
788 |
-
href=paper_url,
|
789 |
-
target="_blank", # Open in new tab
|
790 |
-
style={"textDecoration": "none"}
|
791 |
-
),
|
792 |
-
], style={"padding": "12px"}),
|
793 |
-
style={
|
794 |
-
"marginBottom": "10px",
|
795 |
-
"backgroundColor": "rgba(40, 45, 60, 0.8)",
|
796 |
-
"borderRadius": "8px",
|
797 |
-
"borderLeft": f"4px solid {topic_color}",
|
798 |
-
"boxShadow": "0px 3px 8px rgba(0, 0, 0, 0.2)",
|
799 |
-
"transition": "transform 0.2s",
|
800 |
-
":hover": {
|
801 |
-
"transform": "translateY(-2px)",
|
802 |
-
"boxShadow": "0px 5px 10px rgba(0, 0, 0, 0.3)"
|
803 |
-
}
|
804 |
-
},
|
805 |
-
className="paper-card"
|
806 |
-
)
|
807 |
-
)
|
808 |
-
|
809 |
-
return html.Div([
|
810 |
-
html.Div([
|
811 |
-
html.H4(
|
812 |
-
f"Cluster {clicked_topic}",
|
813 |
-
style={
|
814 |
-
"textAlign": "center",
|
815 |
-
"marginBottom": "5px",
|
816 |
-
"color": topic_color,
|
817 |
-
"fontWeight": "bold"
|
818 |
-
}
|
819 |
-
),
|
820 |
-
html.H5(
|
821 |
-
topic_label,
|
822 |
-
style={
|
823 |
-
"textAlign": "center",
|
824 |
-
"marginBottom": "5px",
|
825 |
-
"color": "#aaaacc",
|
826 |
-
"fontStyle": "italic",
|
827 |
-
"fontWeight": "normal"
|
828 |
-
}
|
829 |
-
),
|
830 |
-
html.Div(
|
831 |
-
topic_theme,
|
832 |
-
style={
|
833 |
-
"textAlign": "center",
|
834 |
-
"marginBottom": "15px",
|
835 |
-
"fontSize": "16px",
|
836 |
-
"fontWeight": "bold"
|
837 |
-
}
|
838 |
-
),
|
839 |
-
html.Hr(style={"borderColor": "rgba(100, 100, 200, 0.3)", "margin": "10px 0 20px 0"}),
|
840 |
-
html.H5(
|
841 |
-
f"Papers ({len(papers_in_cluster)})",
|
842 |
-
style={
|
843 |
-
"textAlign": "left",
|
844 |
-
"marginBottom": "15px",
|
845 |
-
"color": "#ffffff",
|
846 |
-
"fontWeight": "bold"
|
847 |
-
}
|
848 |
-
),
|
849 |
-
]),
|
850 |
-
html.Div(
|
851 |
-
paper_list,
|
852 |
-
style={"paddingRight": "10px"},
|
853 |
-
)
|
854 |
-
])
|
855 |
-
|
856 |
-
# Add custom CSS for hover effects
|
857 |
-
app.index_string = '''
|
858 |
-
<!DOCTYPE html>
|
859 |
-
<html>
|
860 |
-
<head>
|
861 |
-
{%metas%}
|
862 |
-
<title>Trend Analysis Clusters Dashboard</title>
|
863 |
-
{%favicon%}
|
864 |
-
{%css%}
|
865 |
-
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/all.min.css">
|
866 |
-
<style>
|
867 |
-
.paper-card:hover {
|
868 |
-
transform: translateY(-2px);
|
869 |
-
box-shadow: 0px 5px 10px rgba(0, 0, 0, 0.3);
|
870 |
-
background-color: rgba(50, 55, 70, 0.8) !important;
|
871 |
-
}
|
872 |
-
a h6:hover {
|
873 |
-
color: #ffffff !important;
|
874 |
-
text-decoration: underline;
|
875 |
-
}
|
876 |
-
/* Add subtle scroll bar styling */
|
877 |
-
::-webkit-scrollbar {
|
878 |
-
width: 8px;
|
879 |
-
}
|
880 |
-
::-webkit-scrollbar-track {
|
881 |
-
background: rgba(30, 30, 50, 0.3);
|
882 |
-
border-radius: 10px;
|
883 |
-
}
|
884 |
-
::-webkit-scrollbar-thumb {
|
885 |
-
background: rgba(100, 100, 200, 0.5);
|
886 |
-
border-radius: 10px;
|
887 |
-
}
|
888 |
-
::-webkit-scrollbar-thumb:hover {
|
889 |
-
background: rgba(120, 120, 220, 0.7);
|
890 |
-
}
|
891 |
-
</style>
|
892 |
-
</head>
|
893 |
-
<body>
|
894 |
-
{%app_entry%}
|
895 |
-
<footer>
|
896 |
-
{%config%}
|
897 |
-
{%scripts%}
|
898 |
-
{%renderer%}
|
899 |
-
</footer>
|
900 |
-
</body>
|
901 |
-
</html>
|
902 |
-
'''
|
903 |
-
return app
|
904 |
-
|
905 |
-
|
906 |
-
# Global variables to track Dash app state
|
907 |
-
dash_thread = None
|
908 |
-
dash_app = None
|
909 |
-
DASH_PORT =
|
910 |
-
|
911 |
-
|
912 |
-
# Simplified shutdown function that doesn't rely on request or psutil connections
|
913 |
-
def shutdown_dash_app():
|
914 |
-
global dash_thread, dash_app
|
915 |
-
|
916 |
-
if dash_app is not None:
|
917 |
-
try:
|
918 |
-
print("Shutting down previous Dash app...")
|
919 |
-
|
920 |
-
# If we have a Dash app with a server
|
921 |
-
if hasattr(dash_app, 'server'):
|
922 |
-
# Set a shutdown flag
|
923 |
-
dash_app._shutdown = True
|
924 |
-
|
925 |
-
# Force the thread to terminate
|
926 |
-
if dash_thread and dash_thread.is_alive():
|
927 |
-
import ctypes
|
928 |
-
ctypes.pythonapi.PyThreadState_SetAsyncExc(
|
929 |
-
ctypes.c_long(dash_thread.ident),
|
930 |
-
ctypes.py_object(SystemExit)
|
931 |
-
)
|
932 |
-
dash_thread.join(timeout=2)
|
933 |
-
|
934 |
-
# Try to find and kill the process using the port
|
935 |
-
try:
|
936 |
-
import psutil
|
937 |
-
import os
|
938 |
-
import signal
|
939 |
-
|
940 |
-
for proc in psutil.process_iter(['pid']):
|
941 |
-
try:
|
942 |
-
for conn in proc.connections(kind='inet'):
|
943 |
-
if conn.laddr.port == DASH_PORT:
|
944 |
-
print(f"Killing process {proc.pid} using port {DASH_PORT}")
|
945 |
-
os.kill(proc.pid, signal.SIGTERM)
|
946 |
-
except:
|
947 |
-
pass
|
948 |
-
except:
|
949 |
-
print("Could not find process using port")
|
950 |
-
|
951 |
-
# Clear references
|
952 |
-
dash_app = None
|
953 |
-
print("Previous Dash app successfully shut down")
|
954 |
-
return True
|
955 |
-
|
956 |
-
except Exception as e:
|
957 |
-
print(f"Error shutting down Dash app: {e}")
|
958 |
-
# Even if there were errors, reset the state
|
959 |
-
dash_app = None
|
960 |
-
return True
|
961 |
-
|
962 |
-
return True # No app to shut down
|
963 |
-
|
964 |
-
|
965 |
-
# Updated function to run Dash with error handling
|
966 |
-
def run_dash(df, titleNm, Topic_year):
|
967 |
-
global dash_app
|
968 |
-
|
969 |
-
try:
|
970 |
-
# Build the dashboard
|
971 |
-
dash_app = build_dashboard(df, titleNm, Topic_year)
|
972 |
-
|
973 |
-
# Run the server
|
974 |
-
dash_app.run_server(debug=False, port=DASH_PORT, use_reloader=False)
|
975 |
-
except Exception as e:
|
976 |
-
print(f"Error running Dash app: {e}")
|
977 |
-
dash_app = None
|
978 |
-
|
979 |
-
|
980 |
-
# Update your endpoint - removed request parameter from shutdown_dash_app
|
981 |
-
@router.post("/analyze-trends/")
|
982 |
-
async def analyze_trends(request: Request, data_request: TrendAnalysisRequest):
|
983 |
-
global dash_thread
|
984 |
-
TitleName = data_request.topic
|
985 |
-
Topic_year = data_request.year
|
986 |
-
# First, ensure any existing dashboard is properly shut down
|
987 |
-
shutdown_dash_app()
|
988 |
-
|
989 |
-
# Short delay to ensure port is freed
|
990 |
-
import time
|
991 |
-
time.sleep(1)
|
992 |
-
|
993 |
-
# Fetch and process data
|
994 |
-
df, current_page, total_pages, papers_count, total_papers = await fetch_papers_with_pagination(
|
995 |
-
request, data_request.userId, data_request.topic, data_request.year, data_request.page
|
996 |
-
)
|
997 |
-
|
998 |
-
if df.empty and total_papers > 0:
|
999 |
-
raise HTTPException(
|
1000 |
-
status_code=404,
|
1001 |
-
detail=f"No papers found for page {data_request.page + 1}. Valid pages are 1 to {total_pages}."
|
1002 |
-
)
|
1003 |
-
elif df.empty:
|
1004 |
-
raise HTTPException(
|
1005 |
-
status_code=404,
|
1006 |
-
detail=f"No papers found for userId '{data_request.userId}', topic '{data_request.topic}'" +
|
1007 |
-
(f", and year '{data_request.year}'" if data_request.year else "")
|
1008 |
-
)
|
1009 |
-
|
1010 |
-
# Perform the trend analysis
|
1011 |
-
df, topic_labels = perform_trend_analysis(df)
|
1012 |
-
|
1013 |
-
if df.empty:
|
1014 |
-
raise HTTPException(status_code=500, detail="Failed to process embeddings for trend analysis")
|
1015 |
-
|
1016 |
-
# Create cluster statistics
|
1017 |
-
cluster_sizes = df.groupby("topic").size().to_dict()
|
1018 |
-
|
1019 |
-
# Create and start a new thread for the dashboard
|
1020 |
-
dash_thread = threading.Thread(target=run_dash, args=(df, TitleName, Topic_year))
|
1021 |
-
dash_thread.daemon = True
|
1022 |
-
dash_thread.start()
|
1023 |
-
|
1024 |
-
# Open browser automatically
|
1025 |
-
browser_thread = threading.Thread(target=open_browser)
|
1026 |
-
browser_thread.daemon = True
|
1027 |
-
browser_thread.start()
|
1028 |
-
|
1029 |
-
return {
|
1030 |
-
"message": f"Trend analysis completed for papers (page {current_page + 1} of {total_pages})",
|
1031 |
-
"current_page": current_page,
|
1032 |
-
"total_pages": total_pages,
|
1033 |
-
"papers_count": papers_count,
|
1034 |
-
"total_papers": total_papers,
|
1035 |
-
"cluster_sizes": cluster_sizes,
|
1036 |
-
"cluster_titles": topic_labels,
|
1037 |
-
"dashboard_url": f"http://localhost:{DASH_PORT}"
|
1038 |
-
}
|
1039 |
-
|
1040 |
-
|
1041 |
-
# Function to open browser after a short delay
|
1042 |
-
def open_browser():
|
1043 |
-
time.sleep(2) # Wait for servers to start
|
1044 |
-
webbrowser.open_new(f"http://localhost:{DASH_PORT}")
|
|
|
1 |
+
from motor.motor_asyncio import AsyncIOMotorClient
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import re
|
5 |
+
import json
|
6 |
+
import umap
|
7 |
+
import plotly.io as pio
|
8 |
+
import hdbscan
|
9 |
+
from bertopic import BERTopic
|
10 |
+
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
|
11 |
+
from skopt import gp_minimize
|
12 |
+
from sentence_transformers import SentenceTransformer
|
13 |
+
import torch
|
14 |
+
import random
|
15 |
+
import multiprocessing
|
16 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
17 |
+
from bertopic.vectorizers import ClassTfidfTransformer
|
18 |
+
from bertopic.representation import KeyBERTInspired
|
19 |
+
import optuna
|
20 |
+
import pandas as pd
|
21 |
+
import dash
|
22 |
+
from dash import dcc, html, Input, Output, State
|
23 |
+
import plotly.graph_objects as go
|
24 |
+
import plotly.express as px
|
25 |
+
import numpy as np
|
26 |
+
import dash_bootstrap_components as dbc
|
27 |
+
from fastapi import HTTPException, APIRouter, Request
|
28 |
+
from pydantic import BaseModel
|
29 |
+
import threading
|
30 |
+
import time
|
31 |
+
import webbrowser
|
32 |
+
import asyncio
|
33 |
+
|
34 |
+
|
35 |
+
# Set seed for reproducibility
|
36 |
+
def set_seed(seed=42):
|
37 |
+
random.seed(seed)
|
38 |
+
np.random.seed(seed)
|
39 |
+
torch.manual_seed(seed)
|
40 |
+
torch.cuda.manual_seed_all(seed)
|
41 |
+
torch.backends.cudnn.deterministic = True
|
42 |
+
torch.backends.cudnn.benchmark = False
|
43 |
+
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
set_seed(42)
|
47 |
+
multiprocessing.freeze_support()
|
48 |
+
|
49 |
+
global TitleName
|
50 |
+
TitleName = "Dashboard"
|
51 |
+
router = APIRouter()
|
52 |
+
|
53 |
+
|
54 |
+
class TrendAnalysisRequest(BaseModel):
|
55 |
+
userId: str
|
56 |
+
topic: str
|
57 |
+
year: str = None
|
58 |
+
page: int = 0
|
59 |
+
|
60 |
+
|
61 |
+
async def fetch_papers_with_pagination(request: Request, userId: str, topic: str, year: str = None, page: int = 0):
|
62 |
+
# Build the query filter
|
63 |
+
query_filter = {"userId": userId, "topic": topic}
|
64 |
+
if year:
|
65 |
+
query_filter["year"] = year
|
66 |
+
|
67 |
+
# Count total matching documents
|
68 |
+
count_pipeline = [
|
69 |
+
{"$match": query_filter},
|
70 |
+
{"$unwind": "$papers"},
|
71 |
+
{"$count": "total_papers"}
|
72 |
+
]
|
73 |
+
collection = request.app.state.collection
|
74 |
+
count_result = await collection.aggregate(count_pipeline).to_list(length=1)
|
75 |
+
total_papers = count_result[0]['total_papers'] if count_result else 0
|
76 |
+
|
77 |
+
print(f"Total papers matching criteria: {total_papers}")
|
78 |
+
|
79 |
+
# If no papers found, return empty result
|
80 |
+
if total_papers == 0:
|
81 |
+
return pd.DataFrame(), 0, 0, 0, 0
|
82 |
+
|
83 |
+
# Define pagination constants
|
84 |
+
papers_per_page = 200
|
85 |
+
min_papers_last_page = 50
|
86 |
+
|
87 |
+
# Calculate basic pagination
|
88 |
+
if total_papers <= papers_per_page:
|
89 |
+
# Simple case: all papers fit in one page
|
90 |
+
total_pages = 1
|
91 |
+
else:
|
92 |
+
# Multiple pages case
|
93 |
+
full_pages = total_papers // papers_per_page
|
94 |
+
remaining = total_papers % papers_per_page
|
95 |
+
|
96 |
+
if remaining >= min_papers_last_page:
|
97 |
+
# If remaining papers meet minimum threshold, create a separate page
|
98 |
+
total_pages = full_pages + 1
|
99 |
+
else:
|
100 |
+
# Otherwise, we'll have exactly 'full_pages' pages
|
101 |
+
# The remaining papers will be added to the last page
|
102 |
+
total_pages = full_pages
|
103 |
+
|
104 |
+
# Ensure page is within valid range
|
105 |
+
if page >= total_pages:
|
106 |
+
return pd.DataFrame(), 0, total_pages, 0, total_papers
|
107 |
+
|
108 |
+
# Calculate skip and limit based on page number
|
109 |
+
if total_pages == 1:
|
110 |
+
# Only one page - return all papers
|
111 |
+
skip = 0
|
112 |
+
limit = total_papers
|
113 |
+
elif page < total_pages - 1:
|
114 |
+
# Regular full page
|
115 |
+
skip = page * papers_per_page
|
116 |
+
limit = papers_per_page
|
117 |
+
else:
|
118 |
+
# Last page - might include remaining papers
|
119 |
+
remaining = total_papers % papers_per_page
|
120 |
+
|
121 |
+
if remaining >= min_papers_last_page or remaining == 0:
|
122 |
+
# Last page with either enough remaining papers or perfectly divided
|
123 |
+
skip = page * papers_per_page
|
124 |
+
limit = remaining if remaining > 0 else papers_per_page
|
125 |
+
else:
|
126 |
+
# Last page with remaining papers that don't meet minimum threshold
|
127 |
+
# We distribute by adding them to the last page
|
128 |
+
skip = (total_pages - 1) * papers_per_page
|
129 |
+
limit = papers_per_page + remaining
|
130 |
+
|
131 |
+
print(f"Pagination: Page {page + 1} of {total_pages}, Skip {skip}, Limit {limit}")
|
132 |
+
|
133 |
+
# MongoDB aggregation pipeline
|
134 |
+
pipeline = [
|
135 |
+
{"$match": query_filter},
|
136 |
+
{"$unwind": "$papers"},
|
137 |
+
{"$replaceRoot": {"newRoot": "$papers"}},
|
138 |
+
{"$project": {
|
139 |
+
"_id": 0,
|
140 |
+
"paperId": 1,
|
141 |
+
"url": 1,
|
142 |
+
"title": 1,
|
143 |
+
"abstract": 1,
|
144 |
+
"citationCount": 1,
|
145 |
+
"influentialCitationCount": 1,
|
146 |
+
"embedding": 1,
|
147 |
+
"publicationDate": 1,
|
148 |
+
"authors": 1
|
149 |
+
}},
|
150 |
+
{"$sort": {"publicationDate": 1}},
|
151 |
+
{"$skip": skip},
|
152 |
+
{"$limit": limit}
|
153 |
+
]
|
154 |
+
|
155 |
+
# Execute the aggregation pipeline
|
156 |
+
cursor = collection.aggregate(pipeline)
|
157 |
+
papers = await cursor.to_list(None)
|
158 |
+
|
159 |
+
papers_count = len(papers)
|
160 |
+
print(f"Papers Retrieved: {papers_count}")
|
161 |
+
|
162 |
+
# Convert to DataFrame
|
163 |
+
df = pd.DataFrame(papers)
|
164 |
+
df = df.sort_values(by="publicationDate")
|
165 |
+
print(df[["paperId", "publicationDate"]].head(10))
|
166 |
+
|
167 |
+
return df, page, total_pages, papers_count, total_papers
|
168 |
+
|
169 |
+
|
170 |
+
# Preprocessing function
|
171 |
+
def clean_text(text):
|
172 |
+
text = str(text).lower()
|
173 |
+
text = re.sub(r"[^a-zA-Z0-9\s]", "", text)
|
174 |
+
return ' '.join([word for word in text.split() if word not in ENGLISH_STOP_WORDS])
|
175 |
+
|
176 |
+
|
177 |
+
# Adaptive clustering and topic modeling
|
178 |
+
def perform_trend_analysis(df):
|
179 |
+
# Convert embeddings
|
180 |
+
def convert_embedding(embedding):
|
181 |
+
return np.array(embedding["vector"], dtype=np.float64) if isinstance(embedding,
|
182 |
+
dict) and "vector" in embedding else None
|
183 |
+
|
184 |
+
df["embedding"] = df["embedding"].apply(convert_embedding)
|
185 |
+
df = df.dropna(subset=["embedding"])
|
186 |
+
|
187 |
+
if df.empty:
|
188 |
+
return df, {}
|
189 |
+
|
190 |
+
df["clean_text"] = (df["abstract"].fillna("")).apply(clean_text)
|
191 |
+
|
192 |
+
def objective(trial):
|
193 |
+
umap_n_components = trial.suggest_int("umap_n_components", 1, 12)
|
194 |
+
umap_min_dist = trial.suggest_float("umap_min_dist", 0.1, 0.8)
|
195 |
+
umap_n_neighbors = trial.suggest_int("umap_n_neighbors", 2, 12)
|
196 |
+
hdbscan_min_cluster_size = trial.suggest_int("hdbscan_min_cluster_size", 2, 10)
|
197 |
+
hdbscan_min_samples = trial.suggest_int("hdbscan_min_samples", 1, 10)
|
198 |
+
hdbscan_cluster_selection_epsilon = trial.suggest_float("hdbscan_cluster_selection_epsilon", 0.2, 0.8)
|
199 |
+
hdbscan_cluster_selection_method = trial.suggest_categorical("hdbscan_cluster_selection_method",
|
200 |
+
["eom", "leaf"])
|
201 |
+
|
202 |
+
reducer_high_dim = umap.UMAP(
|
203 |
+
n_components=umap_n_components,
|
204 |
+
random_state=42,
|
205 |
+
min_dist=umap_min_dist,
|
206 |
+
n_neighbors=umap_n_neighbors,
|
207 |
+
metric="cosine"
|
208 |
+
)
|
209 |
+
reduced_embeddings_high_dim = reducer_high_dim.fit_transform(np.vstack(df["embedding"].values)).astype(
|
210 |
+
np.float64)
|
211 |
+
|
212 |
+
clusterer = hdbscan.HDBSCAN(
|
213 |
+
min_cluster_size=hdbscan_min_cluster_size,
|
214 |
+
min_samples=hdbscan_min_samples,
|
215 |
+
cluster_selection_epsilon=hdbscan_cluster_selection_epsilon,
|
216 |
+
cluster_selection_method=hdbscan_cluster_selection_method,
|
217 |
+
prediction_data=True,
|
218 |
+
core_dist_n_jobs=1
|
219 |
+
)
|
220 |
+
labels = clusterer.fit_predict(reduced_embeddings_high_dim)
|
221 |
+
|
222 |
+
if len(set(labels)) > 1:
|
223 |
+
dbcv_score = hdbscan.validity.validity_index(reduced_embeddings_high_dim, labels)
|
224 |
+
else:
|
225 |
+
dbcv_score = -np.inf
|
226 |
+
|
227 |
+
return dbcv_score
|
228 |
+
|
229 |
+
study = optuna.create_study(
|
230 |
+
direction="maximize",
|
231 |
+
sampler=optuna.samplers.TPESampler(seed=42))
|
232 |
+
study.optimize(objective, n_trials=100)
|
233 |
+
|
234 |
+
best_params = study.best_params
|
235 |
+
umap_model = umap.UMAP(
|
236 |
+
n_components=best_params["umap_n_components"],
|
237 |
+
random_state=42,
|
238 |
+
min_dist=best_params["umap_min_dist"],
|
239 |
+
n_neighbors=best_params["umap_n_neighbors"],
|
240 |
+
metric="cosine"
|
241 |
+
)
|
242 |
+
hdbscan_model = hdbscan.HDBSCAN(
|
243 |
+
min_cluster_size=best_params["hdbscan_min_cluster_size"],
|
244 |
+
min_samples=best_params["hdbscan_min_samples"],
|
245 |
+
cluster_selection_epsilon=best_params["hdbscan_cluster_selection_epsilon"],
|
246 |
+
cluster_selection_method=best_params["hdbscan_cluster_selection_method"],
|
247 |
+
prediction_data=True,
|
248 |
+
core_dist_n_jobs=1
|
249 |
+
)
|
250 |
+
|
251 |
+
vectorizer = CountVectorizer(
|
252 |
+
stop_words=list(ENGLISH_STOP_WORDS),
|
253 |
+
ngram_range=(2, 3)
|
254 |
+
)
|
255 |
+
|
256 |
+
representation_model = KeyBERTInspired()
|
257 |
+
embedding_model = SentenceTransformer("allenai/specter")
|
258 |
+
topic_model = BERTopic(
|
259 |
+
vectorizer_model=vectorizer,
|
260 |
+
umap_model=umap_model,
|
261 |
+
hdbscan_model=hdbscan_model,
|
262 |
+
embedding_model=embedding_model,
|
263 |
+
nr_topics='auto',
|
264 |
+
top_n_words=8,
|
265 |
+
representation_model=representation_model,
|
266 |
+
ctfidf_model=ClassTfidfTransformer(reduce_frequent_words=False, bm25_weighting=True)
|
267 |
+
)
|
268 |
+
|
269 |
+
topics, _ = topic_model.fit_transform(df["clean_text"], np.vstack(df["embedding"].values))
|
270 |
+
df["topic"] = topics
|
271 |
+
topic_labels = {t: " | ".join([word for word, _ in topic_model.get_topic(t)][:8]) for t in set(topics)}
|
272 |
+
|
273 |
+
reduced_embeddings_2d = umap.UMAP(n_components=2, random_state=42).fit_transform(
|
274 |
+
np.vstack(df["embedding"].values)).astype(np.float64)
|
275 |
+
df["x"] = reduced_embeddings_2d[:, 0]
|
276 |
+
df["y"] = reduced_embeddings_2d[:, 1]
|
277 |
+
df["topic_label"] = df["topic"].map(topic_labels)
|
278 |
+
|
279 |
+
return df, topic_labels
|
280 |
+
|
281 |
+
|
282 |
+
def build_dashboard(df, titleNm, topic_year):
|
283 |
+
TitleName = titleNm + "_" + topic_year
|
284 |
+
color_palette = px.colors.qualitative.Vivid
|
285 |
+
unique_topics = sorted(df["topic"].unique())
|
286 |
+
color_map = {topic: color_palette[i % len(color_palette)] for i, topic in enumerate(unique_topics)}
|
287 |
+
|
288 |
+
# Map colors to topics
|
289 |
+
df["color"] = df["topic"].map(color_map)
|
290 |
+
|
291 |
+
# Calculate the number of papers in each cluster
|
292 |
+
cluster_sizes = df.groupby("topic").size().reset_index(name="paper_count")
|
293 |
+
df = df.merge(cluster_sizes, on="topic", how="left")
|
294 |
+
|
295 |
+
# Improved marker scaling with a better range
|
296 |
+
min_size = 50
|
297 |
+
max_size = 140
|
298 |
+
df["marker_size"] = ((df["paper_count"] - df["paper_count"].min()) /
|
299 |
+
(df["paper_count"].max() - df["paper_count"].min())) * (max_size - min_size) + min_size
|
300 |
+
|
301 |
+
# Add log-transformed citation and influence columns
|
302 |
+
df["log_citation"] = np.log1p(df["citationCount"])
|
303 |
+
df["log_influence"] = np.log1p(df["influentialCitationCount"])
|
304 |
+
|
305 |
+
# Bayesian shrinkage for citations and influence
|
306 |
+
global_median_citation = df["log_citation"].median()
|
307 |
+
global_median_influence = df["log_influence"].median()
|
308 |
+
C = 10 # Shrinkage constant
|
309 |
+
|
310 |
+
def bayesian_shrinkage(group, global_median, C):
|
311 |
+
return (group.sum() + C * global_median) / (len(group) + C)
|
312 |
+
|
313 |
+
adjusted_citations = df.groupby("topic")["log_citation"].apply(
|
314 |
+
lambda x: bayesian_shrinkage(x, global_median_citation, C))
|
315 |
+
adjusted_influence = df.groupby("topic")["log_influence"].apply(
|
316 |
+
lambda x: bayesian_shrinkage(x, global_median_influence, C))
|
317 |
+
|
318 |
+
# Merge adjusted metrics back into the dataframe
|
319 |
+
df = df.merge(adjusted_citations.rename("adjusted_citation"), on="topic")
|
320 |
+
df = df.merge(adjusted_influence.rename("adjusted_influence"), on="topic")
|
321 |
+
|
322 |
+
# Calculate global percentiles for thresholds
|
323 |
+
citation_25th = df["adjusted_citation"].quantile(0.25)
|
324 |
+
citation_75th = df["adjusted_citation"].quantile(0.75)
|
325 |
+
influence_25th = df["adjusted_influence"].quantile(0.25)
|
326 |
+
influence_75th = df["adjusted_influence"].quantile(0.75)
|
327 |
+
|
328 |
+
# Enhanced theme classification with more distinct emojis
|
329 |
+
def classify_theme(row):
|
330 |
+
if row["adjusted_citation"] >= citation_75th and row["adjusted_influence"] >= influence_75th:
|
331 |
+
return "🔥 Hot Topic"
|
332 |
+
elif row["adjusted_citation"] <= citation_25th and row["adjusted_influence"] >= influence_75th:
|
333 |
+
return "💎 Gap Opportunity"
|
334 |
+
elif row["adjusted_citation"] >= citation_75th and row["adjusted_influence"] <= influence_25th:
|
335 |
+
return "⚠️ Risky Theme"
|
336 |
+
else:
|
337 |
+
return "🔄 Neutral"
|
338 |
+
|
339 |
+
df["theme"] = df.apply(classify_theme, axis=1)
|
340 |
+
|
341 |
+
# Initialize the Dash app with an improved Bootstrap theme
|
342 |
+
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.DARKLY]) # DARKLY for a sleek dark theme
|
343 |
+
|
344 |
+
# Create a more visually appealing figure
|
345 |
+
fig = go.Figure()
|
346 |
+
|
347 |
+
# Add subtle grid lines for reference
|
348 |
+
fig.update_xaxes(
|
349 |
+
showgrid=True,
|
350 |
+
gridwidth=0.1,
|
351 |
+
gridcolor='rgba(255, 255, 255, 0.05)',
|
352 |
+
zeroline=False
|
353 |
+
)
|
354 |
+
fig.update_yaxes(
|
355 |
+
showgrid=True,
|
356 |
+
gridwidth=0.1,
|
357 |
+
gridcolor='rgba(255, 255, 255, 0.05)',
|
358 |
+
zeroline=False
|
359 |
+
)
|
360 |
+
|
361 |
+
for topic in unique_topics:
|
362 |
+
topic_data = df[df["topic"] == topic]
|
363 |
+
|
364 |
+
# Get cluster center
|
365 |
+
center_x = topic_data["x"].mean()
|
366 |
+
center_y = topic_data["y"].mean()
|
367 |
+
|
368 |
+
# Get label
|
369 |
+
full_topic_formatted = topic_data['topic_label'].iloc[
|
370 |
+
0] if 'topic_label' in topic_data.columns else f"Cluster {topic}"
|
371 |
+
|
372 |
+
# Add a subtle glow effect with a larger outer circle
|
373 |
+
fig.add_trace(
|
374 |
+
go.Scatter(
|
375 |
+
x=[center_x],
|
376 |
+
y=[center_y],
|
377 |
+
mode="markers",
|
378 |
+
marker=dict(
|
379 |
+
color=color_map[topic],
|
380 |
+
size=topic_data["marker_size"].iloc[0] * 1.2, # Slightly larger for glow effect
|
381 |
+
opacity=0.3,
|
382 |
+
line=dict(width=0),
|
383 |
+
symbol="circle",
|
384 |
+
),
|
385 |
+
showlegend=False,
|
386 |
+
hoverinfo="none",
|
387 |
+
)
|
388 |
+
)
|
389 |
+
|
390 |
+
# Add main cluster circle with enhanced styling
|
391 |
+
fig.add_trace(
|
392 |
+
go.Scatter(
|
393 |
+
x=[center_x],
|
394 |
+
y=[center_y],
|
395 |
+
mode="markers+text",
|
396 |
+
marker=dict(
|
397 |
+
color=color_map[topic],
|
398 |
+
size=topic_data["marker_size"].iloc[0],
|
399 |
+
opacity=0.85,
|
400 |
+
line=dict(width=2, color="white"),
|
401 |
+
symbol="circle",
|
402 |
+
),
|
403 |
+
text=[f"{topic}"],
|
404 |
+
textposition="middle center",
|
405 |
+
textfont=dict(
|
406 |
+
family="Arial Black",
|
407 |
+
size=16,
|
408 |
+
color="white"
|
409 |
+
),
|
410 |
+
name=f"{topic}",
|
411 |
+
hovertemplate=(
|
412 |
+
"<b>Cluster ID:</b> %{text}<br>" +
|
413 |
+
"<b>Name:</b><br>" + full_topic_formatted + "<br>" +
|
414 |
+
"<b>Papers:</b> " + str(topic_data["paper_count"].iloc[0]) + "<br>" +
|
415 |
+
"<b>Popularity:</b> " + (
|
416 |
+
"🔼 High" if topic_data["adjusted_citation"].iloc[0] >= citation_75th else "🔽 Low") +
|
417 |
+
f" (Adjusted Citation: {topic_data['adjusted_citation'].iloc[0]:.2f})<br>" +
|
418 |
+
"<b>Impactfulness:</b> " + (
|
419 |
+
"🔼 High" if topic_data["adjusted_influence"].iloc[0] >= influence_75th else "🔽 Low") +
|
420 |
+
f" (Adjusted Influence: {topic_data['adjusted_influence'].iloc[0]:.2f})<br>" +
|
421 |
+
"<b>Theme:</b> " + topic_data["theme"].iloc[0] +
|
422 |
+
"<extra></extra>"
|
423 |
+
),
|
424 |
+
customdata=[[topic]],
|
425 |
+
)
|
426 |
+
)
|
427 |
+
|
428 |
+
# Add an aesthetic background with gradient
|
429 |
+
fig.update_layout(
|
430 |
+
shapes=[
|
431 |
+
# Improved gradient background
|
432 |
+
dict(
|
433 |
+
type="rect",
|
434 |
+
xref="paper",
|
435 |
+
yref="paper",
|
436 |
+
x0=0,
|
437 |
+
y0=0,
|
438 |
+
x1=1,
|
439 |
+
y1=1,
|
440 |
+
fillcolor="rgba(0, 0, 40, 0.95)",
|
441 |
+
line_width=0,
|
442 |
+
layer="below"
|
443 |
+
),
|
444 |
+
# Add a subtle radial gradient effect
|
445 |
+
dict(
|
446 |
+
type="circle",
|
447 |
+
xref="paper",
|
448 |
+
yref="paper",
|
449 |
+
x0=0.3,
|
450 |
+
y0=0.3,
|
451 |
+
x1=0.7,
|
452 |
+
y1=0.7,
|
453 |
+
fillcolor="rgba(50, 50, 120, 0.2)",
|
454 |
+
line_width=0,
|
455 |
+
layer="below"
|
456 |
+
)
|
457 |
+
],
|
458 |
+
template="plotly_dark",
|
459 |
+
title={
|
460 |
+
'text': f"<b>{TitleName.title()}</b>",
|
461 |
+
'y': 0.97,
|
462 |
+
'x': 0.5,
|
463 |
+
'xanchor': 'center',
|
464 |
+
'yanchor': 'top',
|
465 |
+
'font': dict(
|
466 |
+
family="Arial Black",
|
467 |
+
size=28,
|
468 |
+
color="white",
|
469 |
+
),
|
470 |
+
'xref': 'paper',
|
471 |
+
'yref': 'paper',
|
472 |
+
},
|
473 |
+
margin=dict(l=40, r=40, b=150, t=100),
|
474 |
+
hovermode="closest",
|
475 |
+
xaxis=dict(showticklabels=False),
|
476 |
+
yaxis=dict(showticklabels=False),
|
477 |
+
paper_bgcolor="rgba(0,0,0,0)",
|
478 |
+
plot_bgcolor="rgba(0,0,0,0)",
|
479 |
+
dragmode="pan",
|
480 |
+
legend=dict(
|
481 |
+
orientation="h",
|
482 |
+
yanchor="bottom",
|
483 |
+
y=-0.15,
|
484 |
+
xanchor="center",
|
485 |
+
x=0.5,
|
486 |
+
bgcolor="rgba(30,30,60,0.5)",
|
487 |
+
bordercolor="rgba(255,255,255,0.2)",
|
488 |
+
borderwidth=1
|
489 |
+
),
|
490 |
+
)
|
491 |
+
|
492 |
+
# Add subtle animation options
|
493 |
+
fig.update_layout(
|
494 |
+
updatemenus=[
|
495 |
+
dict(
|
496 |
+
type="buttons",
|
497 |
+
showactive=False,
|
498 |
+
buttons=[
|
499 |
+
dict(
|
500 |
+
label="Reset View",
|
501 |
+
method="relayout",
|
502 |
+
args=[{"xaxis.range": None, "yaxis.range": None}]
|
503 |
+
),
|
504 |
+
],
|
505 |
+
x=0.05,
|
506 |
+
y=0.05,
|
507 |
+
xanchor="left",
|
508 |
+
yanchor="bottom",
|
509 |
+
bgcolor="rgba(50,50,80,0.7)",
|
510 |
+
bordercolor="rgba(255,255,255,0.2)",
|
511 |
+
)
|
512 |
+
]
|
513 |
+
)
|
514 |
+
|
515 |
+
# Enhanced app layout with modern design elements
|
516 |
+
app.layout = dbc.Container(
|
517 |
+
fluid=True,
|
518 |
+
style={
|
519 |
+
"backgroundColor": "#111122",
|
520 |
+
"minHeight": "100vh",
|
521 |
+
"height": "100%",
|
522 |
+
"width": "100%",
|
523 |
+
"backgroundImage": "linear-gradient(135deg, #111122 0%, #15162c 100%)",
|
524 |
+
"padding": "20px"
|
525 |
+
},
|
526 |
+
children=[
|
527 |
+
dbc.Row([
|
528 |
+
dbc.Col(html.H1(
|
529 |
+
"Trend Analysis Dashboard ",
|
530 |
+
style={
|
531 |
+
"textAlign": "center",
|
532 |
+
"color": "white",
|
533 |
+
"marginBottom": "5px",
|
534 |
+
"fontFamily": "Arial Black",
|
535 |
+
"textShadow": "2px 2px 8px rgba(0,0,0,0.7)",
|
536 |
+
"letterSpacing": "2px",
|
537 |
+
"fontSize": "42px",
|
538 |
+
"background": "linear-gradient(135deg, #790091 0%, #565cd5 100%)",
|
539 |
+
"WebkitBackgroundClip": "text",
|
540 |
+
"WebkitTextFillColor": "transparent",
|
541 |
+
"paddingTop": "10px"
|
542 |
+
}
|
543 |
+
), width=10),
|
544 |
+
|
545 |
+
dbc.Col([
|
546 |
+
html.Button(
|
547 |
+
[
|
548 |
+
html.I(className="fas fa-download mr-2"),
|
549 |
+
" Save Dashboard"
|
550 |
+
],
|
551 |
+
id="download-button",
|
552 |
+
className="btn btn-outline-light",
|
553 |
+
style={
|
554 |
+
"marginTop": "10px",
|
555 |
+
"backgroundColor": "rgba(80, 80, 150, 0.4)",
|
556 |
+
"border": "1px solid rgba(100, 100, 200, 0.5)",
|
557 |
+
"borderRadius": "8px",
|
558 |
+
"padding": "8px 15px",
|
559 |
+
"boxShadow": "0px 4px 8px rgba(0, 0, 0, 0.3)",
|
560 |
+
"transition": "all 0.3s ease",
|
561 |
+
"fontSize": "14px",
|
562 |
+
"fontWeight": "bold"
|
563 |
+
}
|
564 |
+
),
|
565 |
+
# Add the download component
|
566 |
+
dcc.Download(id="download-dashboard")
|
567 |
+
], width=2),
|
568 |
+
|
569 |
+
dbc.Col(html.P(
|
570 |
+
"Interactive visualization of research topics and their relationships",
|
571 |
+
style={
|
572 |
+
"textAlign": "center",
|
573 |
+
"color": "#aaddff",
|
574 |
+
"marginBottom": "15px",
|
575 |
+
"fontStyle": "italic",
|
576 |
+
"fontSize": "16px",
|
577 |
+
"fontWeight": "300",
|
578 |
+
"letterSpacing": "0.5px",
|
579 |
+
"textShadow": "1px 1px 3px rgba(0,0,0,0.5)",
|
580 |
+
}
|
581 |
+
), width=12),
|
582 |
+
]),
|
583 |
+
|
584 |
+
dbc.Row([
|
585 |
+
dbc.Col(
|
586 |
+
dbc.Card(
|
587 |
+
dbc.CardBody([
|
588 |
+
dcc.Graph(
|
589 |
+
id="cluster-graph",
|
590 |
+
figure=fig,
|
591 |
+
config={
|
592 |
+
"scrollZoom": True,
|
593 |
+
"displayModeBar": True,
|
594 |
+
"modeBarButtonsToRemove": ["select2d", "lasso2d"]
|
595 |
+
}, style={"height": "80vh", "min-height": "800px"}
|
596 |
+
)
|
597 |
+
], style={"height": "80vh", "min-height": "800px"}),
|
598 |
+
style={
|
599 |
+
"backgroundColor": "rgba(20, 20, 40, 0.7)",
|
600 |
+
"borderRadius": "15px",
|
601 |
+
"boxShadow": "0px 10px 30px rgba(0, 0, 0, 0.5)",
|
602 |
+
"border": "1px solid rgba(100, 100, 200, 0.3)",
|
603 |
+
"height": "80vh",
|
604 |
+
"min-height": "800px" # Ensure minimum height
|
605 |
+
}
|
606 |
+
),
|
607 |
+
width=9
|
608 |
+
),
|
609 |
+
|
610 |
+
dbc.Col(
|
611 |
+
dbc.Card(
|
612 |
+
dbc.CardBody([
|
613 |
+
html.H3("Paper List", style={
|
614 |
+
"textAlign": "center",
|
615 |
+
"marginBottom": "15px",
|
616 |
+
"color": "#ffffff",
|
617 |
+
"fontFamily": "Arial",
|
618 |
+
"fontWeight": "bold",
|
619 |
+
"textShadow": "1px 1px 3px rgba(0,0,0,0.3)"
|
620 |
+
}),
|
621 |
+
html.Hr(style={"borderColor": "rgba(100, 100, 200, 0.3)", "margin": "10px 0 20px 0"}),
|
622 |
+
html.Div(
|
623 |
+
id="paper-list",
|
624 |
+
style={
|
625 |
+
"overflowY": "auto",
|
626 |
+
"height": "700px",
|
627 |
+
"padding": "5px"
|
628 |
+
},
|
629 |
+
children=html.Div([
|
630 |
+
html.Div(
|
631 |
+
html.I(className="fas fa-mouse-pointer", style={"marginRight": "10px"}),
|
632 |
+
style={"textAlign": "center", "fontSize": "24px", "marginBottom": "10px",
|
633 |
+
"color": "#7f8fa6"}
|
634 |
+
),
|
635 |
+
html.P("Click on a cluster to view its papers",
|
636 |
+
style={"textAlign": "center", "color": "#7f8fa6"})
|
637 |
+
])
|
638 |
+
),
|
639 |
+
],
|
640 |
+
style={
|
641 |
+
"backgroundColor": "rgba(30, 30, 50, 0.8)",
|
642 |
+
"borderRadius": "15px",
|
643 |
+
"padding": "20px",
|
644 |
+
"height": "100%"
|
645 |
+
}),
|
646 |
+
style={
|
647 |
+
"height": "800px",
|
648 |
+
"boxShadow": "0px 10px 30px rgba(0, 0, 0, 0.5)",
|
649 |
+
"border": "1px solid rgba(100, 100, 200, 0.3)",
|
650 |
+
"borderRadius": "15px"
|
651 |
+
}
|
652 |
+
),
|
653 |
+
width=3
|
654 |
+
),
|
655 |
+
], style={"marginTop": "20px"}),
|
656 |
+
|
657 |
+
# Add a footer with theme legend
|
658 |
+
dbc.Row([
|
659 |
+
dbc.Col(
|
660 |
+
dbc.Card(
|
661 |
+
dbc.CardBody([
|
662 |
+
html.H5("Theme Legend", style={"textAlign": "center", "marginBottom": "15px"}),
|
663 |
+
dbc.Row([
|
664 |
+
dbc.Col(html.Div([
|
665 |
+
html.Span("🔥", style={"fontSize": "20px", "marginRight": "10px"}),
|
666 |
+
"Hot Topic: High citations & high influence"
|
667 |
+
]), width=3),
|
668 |
+
dbc.Col(html.Div([
|
669 |
+
html.Span("💎", style={"fontSize": "20px", "marginRight": "10px"}),
|
670 |
+
"Gap Opportunity: Low citations but high influence"
|
671 |
+
]), width=3),
|
672 |
+
dbc.Col(html.Div([
|
673 |
+
html.Span("⚠️", style={"fontSize": "20px", "marginRight": "10px"}),
|
674 |
+
"Risky Theme: High citations but low influence"
|
675 |
+
]), width=3),
|
676 |
+
dbc.Col(html.Div([
|
677 |
+
html.Span("🔄", style={"fontSize": "20px", "marginRight": "10px"}),
|
678 |
+
"Neutral: Average citations and influence"
|
679 |
+
]), width=3),
|
680 |
+
])
|
681 |
+
]),
|
682 |
+
style={
|
683 |
+
"backgroundColor": "rgba(30, 30, 50, 0.8)",
|
684 |
+
"borderRadius": "15px",
|
685 |
+
"marginTop": "20px",
|
686 |
+
"boxShadow": "0px 5px 15px rgba(0, 0, 0, 0.3)",
|
687 |
+
"border": "1px solid rgba(100, 100, 200, 0.3)"
|
688 |
+
}
|
689 |
+
),
|
690 |
+
width=12
|
691 |
+
),
|
692 |
+
|
693 |
+
]),
|
694 |
+
|
695 |
+
dcc.Store(id="stored-figure", data=fig)
|
696 |
+
]
|
697 |
+
|
698 |
+
)
|
699 |
+
|
700 |
+
@app.callback(
|
701 |
+
Output("download-dashboard", "data"),
|
702 |
+
Input("download-button", "n_clicks"),
|
703 |
+
State("cluster-graph", "figure"),
|
704 |
+
prevent_initial_call=True
|
705 |
+
)
|
706 |
+
def download_dashboard(n_clicks, figure):
|
707 |
+
if n_clicks is None:
|
708 |
+
return None
|
709 |
+
|
710 |
+
# Save the figure as HTML with full plotly.js included
|
711 |
+
dashboard_html = pio.to_html(
|
712 |
+
figure,
|
713 |
+
full_html=True,
|
714 |
+
include_plotlyjs='cdn',
|
715 |
+
config={'responsive': True}
|
716 |
+
)
|
717 |
+
|
718 |
+
# Return the dashboard as an HTML file
|
719 |
+
return dict(
|
720 |
+
content=dashboard_html,
|
721 |
+
filename="research_dashboard.html",
|
722 |
+
type="text/html",
|
723 |
+
)
|
724 |
+
|
725 |
+
# Enhanced callback to update paper list with better styling
|
726 |
+
# Enhanced callback to update paper list with better styling
|
727 |
+
@app.callback(
|
728 |
+
Output("paper-list", "children"),
|
729 |
+
[Input("cluster-graph", "clickData")]
|
730 |
+
)
|
731 |
+
def update_paper_list(clickData):
|
732 |
+
if clickData is None:
|
733 |
+
return html.Div([
|
734 |
+
html.Div(
|
735 |
+
html.I(className="fas fa-mouse-pointer", style={"marginRight": "10px"}),
|
736 |
+
style={"textAlign": "center", "fontSize": "24px", "marginBottom": "10px", "color": "#7f8fa6"}
|
737 |
+
),
|
738 |
+
html.P("Click on a cluster to view its papers",
|
739 |
+
style={"textAlign": "center", "color": "#7f8fa6"})
|
740 |
+
])
|
741 |
+
|
742 |
+
# Extract the clicked cluster ID
|
743 |
+
try:
|
744 |
+
clicked_topic = clickData["points"][0]["customdata"][0]
|
745 |
+
|
746 |
+
# Get the color for this topic for styling consistency
|
747 |
+
topic_color = color_map[clicked_topic]
|
748 |
+
|
749 |
+
# Get the theme for this topic
|
750 |
+
topic_theme = df[df["topic"] == clicked_topic]["theme"].iloc[0]
|
751 |
+
|
752 |
+
except (KeyError, IndexError):
|
753 |
+
return html.Div("Error retrieving cluster data.", style={"textAlign": "center", "marginTop": "20px"})
|
754 |
+
|
755 |
+
# Filter papers in the clicked cluster - UPDATED to include titles AND urls
|
756 |
+
papers_in_cluster = df[df["topic"] == clicked_topic][["title", "url", "paperId"]]
|
757 |
+
|
758 |
+
if papers_in_cluster.empty:
|
759 |
+
return html.Div(f"No papers found for Cluster {clicked_topic}.",
|
760 |
+
style={"textAlign": "center", "marginTop": "20px"})
|
761 |
+
|
762 |
+
# Get topic label
|
763 |
+
topic_label = df[df["topic"] == clicked_topic]['topic_label'].iloc[
|
764 |
+
0] if 'topic_label' in df.columns else f"Cluster {clicked_topic}"
|
765 |
+
|
766 |
+
# Create an enhanced styled list of paper titles - UPDATED to make clickable
|
767 |
+
paper_list = []
|
768 |
+
for i, (_, paper) in enumerate(papers_in_cluster.iterrows()):
|
769 |
+
paper_url = paper["url"]
|
770 |
+
paper_title = paper["title"]
|
771 |
+
|
772 |
+
paper_list.append(
|
773 |
+
dbc.Card(
|
774 |
+
dbc.CardBody([
|
775 |
+
html.A(
|
776 |
+
html.H6(
|
777 |
+
f"{i + 1}. {paper_title}",
|
778 |
+
className="card-title",
|
779 |
+
style={
|
780 |
+
"fontSize": "14px",
|
781 |
+
"margin": "5px 0",
|
782 |
+
"fontWeight": "normal",
|
783 |
+
"lineHeight": "1.4",
|
784 |
+
"color": "#aaccff", # Blue color to indicate clickable link
|
785 |
+
"cursor": "pointer"
|
786 |
+
}
|
787 |
+
),
|
788 |
+
href=paper_url,
|
789 |
+
target="_blank", # Open in new tab
|
790 |
+
style={"textDecoration": "none"}
|
791 |
+
),
|
792 |
+
], style={"padding": "12px"}),
|
793 |
+
style={
|
794 |
+
"marginBottom": "10px",
|
795 |
+
"backgroundColor": "rgba(40, 45, 60, 0.8)",
|
796 |
+
"borderRadius": "8px",
|
797 |
+
"borderLeft": f"4px solid {topic_color}",
|
798 |
+
"boxShadow": "0px 3px 8px rgba(0, 0, 0, 0.2)",
|
799 |
+
"transition": "transform 0.2s",
|
800 |
+
":hover": {
|
801 |
+
"transform": "translateY(-2px)",
|
802 |
+
"boxShadow": "0px 5px 10px rgba(0, 0, 0, 0.3)"
|
803 |
+
}
|
804 |
+
},
|
805 |
+
className="paper-card"
|
806 |
+
)
|
807 |
+
)
|
808 |
+
|
809 |
+
return html.Div([
|
810 |
+
html.Div([
|
811 |
+
html.H4(
|
812 |
+
f"Cluster {clicked_topic}",
|
813 |
+
style={
|
814 |
+
"textAlign": "center",
|
815 |
+
"marginBottom": "5px",
|
816 |
+
"color": topic_color,
|
817 |
+
"fontWeight": "bold"
|
818 |
+
}
|
819 |
+
),
|
820 |
+
html.H5(
|
821 |
+
topic_label,
|
822 |
+
style={
|
823 |
+
"textAlign": "center",
|
824 |
+
"marginBottom": "5px",
|
825 |
+
"color": "#aaaacc",
|
826 |
+
"fontStyle": "italic",
|
827 |
+
"fontWeight": "normal"
|
828 |
+
}
|
829 |
+
),
|
830 |
+
html.Div(
|
831 |
+
topic_theme,
|
832 |
+
style={
|
833 |
+
"textAlign": "center",
|
834 |
+
"marginBottom": "15px",
|
835 |
+
"fontSize": "16px",
|
836 |
+
"fontWeight": "bold"
|
837 |
+
}
|
838 |
+
),
|
839 |
+
html.Hr(style={"borderColor": "rgba(100, 100, 200, 0.3)", "margin": "10px 0 20px 0"}),
|
840 |
+
html.H5(
|
841 |
+
f"Papers ({len(papers_in_cluster)})",
|
842 |
+
style={
|
843 |
+
"textAlign": "left",
|
844 |
+
"marginBottom": "15px",
|
845 |
+
"color": "#ffffff",
|
846 |
+
"fontWeight": "bold"
|
847 |
+
}
|
848 |
+
),
|
849 |
+
]),
|
850 |
+
html.Div(
|
851 |
+
paper_list,
|
852 |
+
style={"paddingRight": "10px"},
|
853 |
+
)
|
854 |
+
])
|
855 |
+
|
856 |
+
# Add custom CSS for hover effects
|
857 |
+
app.index_string = '''
|
858 |
+
<!DOCTYPE html>
|
859 |
+
<html>
|
860 |
+
<head>
|
861 |
+
{%metas%}
|
862 |
+
<title>Trend Analysis Clusters Dashboard</title>
|
863 |
+
{%favicon%}
|
864 |
+
{%css%}
|
865 |
+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/all.min.css">
|
866 |
+
<style>
|
867 |
+
.paper-card:hover {
|
868 |
+
transform: translateY(-2px);
|
869 |
+
box-shadow: 0px 5px 10px rgba(0, 0, 0, 0.3);
|
870 |
+
background-color: rgba(50, 55, 70, 0.8) !important;
|
871 |
+
}
|
872 |
+
a h6:hover {
|
873 |
+
color: #ffffff !important;
|
874 |
+
text-decoration: underline;
|
875 |
+
}
|
876 |
+
/* Add subtle scroll bar styling */
|
877 |
+
::-webkit-scrollbar {
|
878 |
+
width: 8px;
|
879 |
+
}
|
880 |
+
::-webkit-scrollbar-track {
|
881 |
+
background: rgba(30, 30, 50, 0.3);
|
882 |
+
border-radius: 10px;
|
883 |
+
}
|
884 |
+
::-webkit-scrollbar-thumb {
|
885 |
+
background: rgba(100, 100, 200, 0.5);
|
886 |
+
border-radius: 10px;
|
887 |
+
}
|
888 |
+
::-webkit-scrollbar-thumb:hover {
|
889 |
+
background: rgba(120, 120, 220, 0.7);
|
890 |
+
}
|
891 |
+
</style>
|
892 |
+
</head>
|
893 |
+
<body>
|
894 |
+
{%app_entry%}
|
895 |
+
<footer>
|
896 |
+
{%config%}
|
897 |
+
{%scripts%}
|
898 |
+
{%renderer%}
|
899 |
+
</footer>
|
900 |
+
</body>
|
901 |
+
</html>
|
902 |
+
'''
|
903 |
+
return app
|
904 |
+
|
905 |
+
|
906 |
+
# Global variables to track Dash app state
|
907 |
+
dash_thread = None
|
908 |
+
dash_app = None
|
909 |
+
DASH_PORT = 7860
|
910 |
+
|
911 |
+
|
912 |
+
# Simplified shutdown function that doesn't rely on request or psutil connections
|
913 |
+
def shutdown_dash_app():
|
914 |
+
global dash_thread, dash_app
|
915 |
+
|
916 |
+
if dash_app is not None:
|
917 |
+
try:
|
918 |
+
print("Shutting down previous Dash app...")
|
919 |
+
|
920 |
+
# If we have a Dash app with a server
|
921 |
+
if hasattr(dash_app, 'server'):
|
922 |
+
# Set a shutdown flag
|
923 |
+
dash_app._shutdown = True
|
924 |
+
|
925 |
+
# Force the thread to terminate
|
926 |
+
if dash_thread and dash_thread.is_alive():
|
927 |
+
import ctypes
|
928 |
+
ctypes.pythonapi.PyThreadState_SetAsyncExc(
|
929 |
+
ctypes.c_long(dash_thread.ident),
|
930 |
+
ctypes.py_object(SystemExit)
|
931 |
+
)
|
932 |
+
dash_thread.join(timeout=2)
|
933 |
+
|
934 |
+
# Try to find and kill the process using the port
|
935 |
+
try:
|
936 |
+
import psutil
|
937 |
+
import os
|
938 |
+
import signal
|
939 |
+
|
940 |
+
for proc in psutil.process_iter(['pid']):
|
941 |
+
try:
|
942 |
+
for conn in proc.connections(kind='inet'):
|
943 |
+
if conn.laddr.port == DASH_PORT:
|
944 |
+
print(f"Killing process {proc.pid} using port {DASH_PORT}")
|
945 |
+
os.kill(proc.pid, signal.SIGTERM)
|
946 |
+
except:
|
947 |
+
pass
|
948 |
+
except:
|
949 |
+
print("Could not find process using port")
|
950 |
+
|
951 |
+
# Clear references
|
952 |
+
dash_app = None
|
953 |
+
print("Previous Dash app successfully shut down")
|
954 |
+
return True
|
955 |
+
|
956 |
+
except Exception as e:
|
957 |
+
print(f"Error shutting down Dash app: {e}")
|
958 |
+
# Even if there were errors, reset the state
|
959 |
+
dash_app = None
|
960 |
+
return True
|
961 |
+
|
962 |
+
return True # No app to shut down
|
963 |
+
|
964 |
+
|
965 |
+
# Updated function to run Dash with error handling
|
966 |
+
def run_dash(df, titleNm, Topic_year):
|
967 |
+
global dash_app
|
968 |
+
|
969 |
+
try:
|
970 |
+
# Build the dashboard
|
971 |
+
dash_app = build_dashboard(df, titleNm, Topic_year)
|
972 |
+
|
973 |
+
# Run the server
|
974 |
+
dash_app.run_server(debug=False, port=DASH_PORT, use_reloader=False)
|
975 |
+
except Exception as e:
|
976 |
+
print(f"Error running Dash app: {e}")
|
977 |
+
dash_app = None
|
978 |
+
|
979 |
+
|
980 |
+
# Update your endpoint - removed request parameter from shutdown_dash_app
|
981 |
+
@router.post("/analyze-trends/")
|
982 |
+
async def analyze_trends(request: Request, data_request: TrendAnalysisRequest):
|
983 |
+
global dash_thread
|
984 |
+
TitleName = data_request.topic
|
985 |
+
Topic_year = data_request.year
|
986 |
+
# First, ensure any existing dashboard is properly shut down
|
987 |
+
shutdown_dash_app()
|
988 |
+
|
989 |
+
# Short delay to ensure port is freed
|
990 |
+
import time
|
991 |
+
time.sleep(1)
|
992 |
+
|
993 |
+
# Fetch and process data
|
994 |
+
df, current_page, total_pages, papers_count, total_papers = await fetch_papers_with_pagination(
|
995 |
+
request, data_request.userId, data_request.topic, data_request.year, data_request.page
|
996 |
+
)
|
997 |
+
|
998 |
+
if df.empty and total_papers > 0:
|
999 |
+
raise HTTPException(
|
1000 |
+
status_code=404,
|
1001 |
+
detail=f"No papers found for page {data_request.page + 1}. Valid pages are 1 to {total_pages}."
|
1002 |
+
)
|
1003 |
+
elif df.empty:
|
1004 |
+
raise HTTPException(
|
1005 |
+
status_code=404,
|
1006 |
+
detail=f"No papers found for userId '{data_request.userId}', topic '{data_request.topic}'" +
|
1007 |
+
(f", and year '{data_request.year}'" if data_request.year else "")
|
1008 |
+
)
|
1009 |
+
|
1010 |
+
# Perform the trend analysis
|
1011 |
+
df, topic_labels = perform_trend_analysis(df)
|
1012 |
+
|
1013 |
+
if df.empty:
|
1014 |
+
raise HTTPException(status_code=500, detail="Failed to process embeddings for trend analysis")
|
1015 |
+
|
1016 |
+
# Create cluster statistics
|
1017 |
+
cluster_sizes = df.groupby("topic").size().to_dict()
|
1018 |
+
|
1019 |
+
# Create and start a new thread for the dashboard
|
1020 |
+
dash_thread = threading.Thread(target=run_dash, args=(df, TitleName, Topic_year))
|
1021 |
+
dash_thread.daemon = True
|
1022 |
+
dash_thread.start()
|
1023 |
+
|
1024 |
+
# Open browser automatically
|
1025 |
+
browser_thread = threading.Thread(target=open_browser)
|
1026 |
+
browser_thread.daemon = True
|
1027 |
+
browser_thread.start()
|
1028 |
+
|
1029 |
+
return {
|
1030 |
+
"message": f"Trend analysis completed for papers (page {current_page + 1} of {total_pages})",
|
1031 |
+
"current_page": current_page,
|
1032 |
+
"total_pages": total_pages,
|
1033 |
+
"papers_count": papers_count,
|
1034 |
+
"total_papers": total_papers,
|
1035 |
+
"cluster_sizes": cluster_sizes,
|
1036 |
+
"cluster_titles": topic_labels,
|
1037 |
+
"dashboard_url": f"http://localhost:{DASH_PORT}"
|
1038 |
+
}
|
1039 |
+
|
1040 |
+
|
1041 |
+
# Function to open browser after a short delay
|
1042 |
+
def open_browser():
|
1043 |
+
time.sleep(2) # Wait for servers to start
|
1044 |
+
webbrowser.open_new(f"http://localhost:{DASH_PORT}")
|