File size: 39,421 Bytes
e487cc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 |
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from dash import Dash, dcc, html, Input, Output, State
import numpy as np
import random
import math
from collections import defaultdict
import colorsys
from fastapi import HTTPException
from pydantic import BaseModel
import threading
import webbrowser
import os
import psutil
import socket
from fastapi import HTTPException, APIRouter, Request
router = APIRouter()
# Global variables to track dashboard state
dashboard_port = 8050
dashboard_process = None
# MongoDB connection and data loader function
async def load_data_from_mongodb(userId, topic, year, request:Request):
query = {
"userId": userId,
"topic": topic,
"year": year
}
collection = request.app.state.collection2
document = await collection.find_one(query)
if not document:
raise ValueError(f"No data found for userId={userId}, topic={topic}, year={year}")
# Extract metadata and convert to DataFrame
metadata = document.get("metadata", [])
df = pd.DataFrame(metadata)
df['publication_date'] = pd.to_datetime(df['publication_date'])
return df
# Common functions (unchanged)
def filter_by_date_range(dataframe, start_idx, end_idx):
start_date = date_range[start_idx]
end_date = date_range[end_idx]
return dataframe[(dataframe['publication_date'] >= start_date) &
(dataframe['publication_date'] <= end_date)]
def generate_vibrant_colors(n):
base_colors = []
for i in range(n):
hue = (i / n) % 1.0
saturation = random.uniform(0.7, 0.9)
value = random.uniform(0.7, 0.9)
r, g, b = colorsys.hsv_to_rgb(hue, saturation, value)
vibrant_color = '#{:02x}{:02x}{:02x}'.format(
int(r * 255),
int(g * 255),
int(b * 255)
)
end_color_r = min(255, int(r * 255 * 1.1))
end_color_g = min(255, int(g * 255 * 1.1))
end_color_b = min(255, int(b * 255 * 1.1))
gradient_end = '#{:02x}{:02x}{:02x}'.format(end_color_r, end_color_g, end_color_b)
base_colors.append({
'start': vibrant_color,
'end': gradient_end
})
extended_colors = base_colors * math.ceil(n/10)
final_colors = []
for i in range(n):
color = extended_colors[i]
jitter = random.uniform(0.9, 1.1)
def jitter_color(hex_color):
r, g, b = [min(255, max(0, int(int(hex_color[j:j+2], 16) * jitter))) for j in (1, 3, 5)]
return f'rgba({r}, {g}, {b}, 0.9)'
final_colors.append({
'start': jitter_color(color['start']),
'end': jitter_color(color['end']).replace('0.9', '0.8')
})
return final_colors
# Knowledge map creator function (unchanged)
def create_knowledge_map(filtered_df, view_type='host'):
color_palette = {
'background': '#1E1E1E', # Dark background (almost black)
'card_bg': '#1A2238', # Bluish-black for cards (from your image)
'accent1': '#FF6A3D', # Orange for headings (keeping from original)
'accent2': '#4ECCA3', # Keeping teal for secondary elements
'accent3': '#9D84B7', # Keeping lavender for tertiary elements
'text_light': '#FFFFFF', # White text
'text_dark': '#E0E0E0', # Light grey text for dark backgrounds
}
if view_type == 'host':
group_col = 'host_organization_name'
id_col = 'host_organization_id'
title = "Host Organization Clusters"
else:
group_col = 'venue'
id_col = 'venue_id'
title = "Publication Venue Clusters"
summary = filtered_df.groupby(group_col).agg(
paper_count=('id', 'count'),
is_oa=('is_oa', 'mean'),
oa_status=('oa_status', lambda x: x.mode()[0] if not x.mode().empty else None),
entity_id=(id_col, 'first')
).reset_index()
paper_count_groups = defaultdict(list)
for _, row in summary.iterrows():
paper_count_groups[row['paper_count']].append(row)
knowledge_map_fig = go.Figure()
sorted_counts = sorted(paper_count_groups.keys(), reverse=True)
vibrant_colors = generate_vibrant_colors(len(sorted_counts))
golden_angle = np.pi * (3 - np.sqrt(5))
spiral_coef = 150
cluster_metadata = {}
max_x, max_y = 500, 500
for i, count in enumerate(sorted_counts):
radius = np.sqrt(i) * spiral_coef
theta = golden_angle * i
cluster_x, cluster_y = radius * np.cos(theta), radius * np.sin(theta)
label_offset_angle = theta + np.pi/4
label_offset_distance = 80 + 4 * np.sqrt(len(paper_count_groups[count]))
label_x = cluster_x + label_offset_distance * np.cos(label_offset_angle)
label_y = cluster_y + label_offset_distance * np.sin(label_offset_angle)
cluster_metadata[count] = {
'center_x': cluster_x,
'center_y': cluster_y,
'entities': paper_count_groups[count],
'color': vibrant_colors[i]
}
entities = paper_count_groups[count]
num_entities = len(entities)
cluster_size = min(200, max(80, 40 + 8 * np.sqrt(num_entities)))
color = vibrant_colors[i]
knowledge_map_fig.add_shape(
type="circle",
x0=cluster_x - cluster_size/2, y0=cluster_y - cluster_size/2,
x1=cluster_x + cluster_size/2, y1=cluster_y + cluster_size/2,
fillcolor=color['end'].replace("0.8", "0.15"),
line=dict(color=color['start'], width=1.5),
opacity=0.7
)
knowledge_map_fig.add_trace(go.Scatter(
x=[cluster_x], y=[cluster_y],
mode='markers',
marker=dict(size=cluster_size, color=color['start'], opacity=0.3),
customdata=[[count, "cluster"]],
hoverinfo='skip'
))
knowledge_map_fig.add_trace(go.Scatter(
x=[cluster_x, label_x], y=[cluster_y, label_y],
mode='lines',
line=dict(color=color['start'], width=1, dash='dot'),
hoverinfo='skip'
))
knowledge_map_fig.add_annotation(
x=label_x, y=label_y,
text=f"{count} papers<br>{num_entities} {'orgs' if view_type == 'host' else 'venues'}",
showarrow=False,
font=dict(size=11, color='white'),
bgcolor=color['start'],
bordercolor='white',
borderwidth=1,
opacity=0.9
)
entities_sorted = sorted(entities, key=lambda x: x[group_col])
inner_spiral_coef = 0.4
for j, entity_data in enumerate(entities_sorted):
spiral_radius = np.sqrt(j) * cluster_size * inner_spiral_coef / np.sqrt(num_entities + 1)
spiral_angle = golden_angle * j
jitter_radius = random.uniform(0.9, 1.1) * spiral_radius
jitter_angle = spiral_angle + random.uniform(-0.1, 0.1)
entity_x = cluster_x + jitter_radius * np.cos(jitter_angle)
entity_y = cluster_y + jitter_radius * np.sin(jitter_angle)
node_size = min(18, max(8, np.sqrt(entity_data['paper_count']) * 1.5))
knowledge_map_fig.add_trace(go.Scatter(
x=[entity_x], y=[entity_y],
mode='markers',
marker=dict(
size=node_size,
color=color['start'],
line=dict(color='rgba(255, 255, 255, 0.9)', width=1.5)
),
customdata=[[
entity_data[group_col],
entity_data['paper_count'],
entity_data['is_oa'],
entity_data['entity_id'],
count,
"entity"
]],
hovertemplate=(
f"<b>{entity_data[group_col]}</b><br>"
f"Papers: {entity_data['paper_count']}<br>"
f"Open Access: {entity_data['is_oa']:.1%}<extra></extra>"
)
))
max_x = max([abs(cluster['center_x']) for cluster in cluster_metadata.values()]) + 150 if cluster_metadata else 500
max_y = max([abs(cluster['center_y']) for cluster in cluster_metadata.values()]) + 150 if cluster_metadata else 500
# Update knowledge_map_fig layout
knowledge_map_fig.update_layout(
title=dict(
text=title,
font=dict(size=22, family='"Poppins", sans-serif', color=color_palette['accent1']) # Orange title
),
plot_bgcolor='rgba(26, 34, 56, 1)', # Bluish-black background
paper_bgcolor='rgba(26, 34, 56, 0.7)',
xaxis=dict(range=[-max(700, max_x), max(700, max_x)], showticklabels=False, showgrid=False),
yaxis=dict(range=[-max(500, max_y), max(500, max_y)], showticklabels=False, showgrid=False),
margin=dict(l=10, r=10, t=60, b=10),
height=700,
hovermode='closest',
showlegend=False,
font=dict(family='"Poppins", sans-serif', color=color_palette['text_light']), # Light text
)
return knowledge_map_fig, cluster_metadata
# Other chart functions (unchanged)
def create_oa_pie_fig(filtered_df):
color_palette = {
'background': '#1A2238', # Dark blue background
'card_bg': '#1A2238', # Changed to match the other chart
'accent1': '#FF6A3D', # Vibrant orange for highlights
'accent2': '#4ECCA3', # Teal for secondary elements
'accent3': '#9D84B7', # Lavender for tertiary elements
'text_light': '#FFFFFF', # White text
'text_dark': '#FFFFFF', # Changed to white for better contrast
}
fig = px.pie(
filtered_df, names='is_oa', title="Overall Open Access Status",
labels={True: "Open Access", False: "Not Open Access"},
color_discrete_sequence=[color_palette['accent2'], color_palette['accent1']]
)
fig.update_traces(
textinfo='label+percent',
textfont=dict(size=14, family='"Poppins", sans-serif'),
marker=dict(line=dict(color='#1A2238', width=2)) # Match background color
)
fig.update_layout(
title=dict(
text="Overall Open Access Status",
font=dict(size=18, family='"Poppins", sans-serif', color=color_palette['accent1']) # Orange title
),
font=dict(family='"Poppins", sans-serif', color=color_palette['text_light']),
paper_bgcolor=color_palette['background'], # Dark background
plot_bgcolor=color_palette['background'], # Dark background
margin=dict(t=50, b=20, l=20, r=20),
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.2,
xanchor="center",
x=0.5,
font=dict(size=12, color=color_palette['text_light'])
)
)
return fig
def create_oa_status_pie_fig(filtered_df):
custom_colors = [
"#9D84B7",
'#4DADFF',
'#FFD166',
'#06D6A0',
'#EF476F'
]
fig = px.pie(
filtered_df,
names='oa_status',
title="Open Access Status Distribution",
color_discrete_sequence=custom_colors
)
fig.update_traces(
textinfo='label+percent',
insidetextorientation='radial',
textfont=dict(size=14, family='"Poppins", sans-serif'),
marker=dict(line=dict(color='#FFFFFF', width=2))
)
fig.update_layout(
title=dict(
text="Open Access Status Distribution",
font=dict(size=18, family='"Poppins", sans-serif', color="#FF6A3D")
),
font=dict(family='"Poppins", sans-serif', color='#FFFFFF'),
paper_bgcolor='#1A2238', # Bluish-black background
plot_bgcolor='#1A2238',
margin=dict(t=50, b=20, l=20, r=20),
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.2,
xanchor="center",
x=0.5,
font=dict(size=12, color='#FFFFFF')
)
)
return fig
def create_type_bar_fig(filtered_df):
type_counts = filtered_df['type'].value_counts()
vibrant_colors = [
'#4361EE', '#3A0CA3', '#4CC9F0',
'#F72585', '#7209B7', '#B5179E',
'#480CA8', '#560BAD', '#F77F00'
]
fig = px.bar(
type_counts,
title="Publication Types",
labels={'value': 'Count', 'index': 'Type'},
color=type_counts.index,
color_discrete_sequence=vibrant_colors[:len(type_counts)]
)
fig.update_layout(
title=dict(
text="Publication Types",
font=dict(size=20, family='"Poppins", sans-serif', color="#FF6A3D") # Larger font size
),
xaxis_title="Type",
yaxis_title="Count",
font=dict(family='"Poppins", sans-serif', color="#FFFFFF", size=14), # Increased font size
paper_bgcolor='#1A2238', # Consistent dark background
plot_bgcolor='#1A2238', # Consistent dark background
margin=dict(t=70, b=60, l=60, r=40), # Increased margins
xaxis=dict(
tickfont=dict(size=14, color="#FFFFFF"), # Increased tick font size
tickangle=-45,
gridcolor='rgba(255, 255, 255, 0.1)' # Lighter grid lines
),
yaxis=dict(
tickfont=dict(size=14, color="#FFFFFF"), # Increased tick font size
gridcolor='rgba(255, 255, 255, 0.1)' # Lighter grid lines
),
bargap=0.3, # Increased bar gap
)
fig.update_traces(
marker_line_width=1,
marker_line_color='rgba(0, 0, 0, 0.5)',
opacity=0.9,
hovertemplate='%{y} publications<extra></extra>',
texttemplate='%{y}', # Add text labels
textposition='outside', # Position labels outside bars
textfont=dict(size=14, color='white') # Text label formatting
)
return fig
# Function to check if port is in use
def is_port_in_use(port):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(('localhost', port)) == 0
# Function to find a free port
def find_free_port(start_port=8050):
port = start_port
while is_port_in_use(port):
port += 1
return port
# Function to shutdown any existing dashboard
def shutdown_existing_dashboard():
global dashboard_process
# First, check if our port is in use
if is_port_in_use(dashboard_port):
try:
# Kill processes using the port
for proc in psutil.process_iter(['pid', 'name', 'connections']):
try:
for conn in proc.connections():
if conn.laddr.port == dashboard_port:
print(f"Terminating process {proc.pid} using port {dashboard_port}")
proc.terminate()
proc.wait(timeout=3)
except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
pass
except Exception as e:
print(f"Error freeing port {dashboard_port}: {e}")
# If we're tracking a dashboard process, try to terminate it
if dashboard_process is not None:
try:
# Kill the process if it's still running
if dashboard_process.is_alive():
parent = psutil.Process(os.getpid())
children = parent.children(recursive=True)
for process in children:
try:
process.terminate()
except:
pass
dashboard_process = None
except Exception as e:
print(f"Error terminating dashboard process: {e}")
dashboard_process = None # Reset the reference anyway
# Pydantic model for request validation
class DashboardRequest(BaseModel):
userId: str
topic: str
year: int
@router.post("/load_and_display_dashboard/")
async def load_and_display_dashboard(request: DashboardRequest, req:Request):
global dashboard_process, dashboard_port
# Make sure any existing dashboard is shut down
shutdown_existing_dashboard()
# Find a free port
dashboard_port = find_free_port()
try:
# Load data from MongoDB
df = await load_data_from_mongodb(request.userId, request.topic, request.year, req)
# Get date range for the slider
global min_date, max_date, date_range, date_marks
min_date = df['publication_date'].min()
max_date = df['publication_date'].max()
date_range = pd.date_range(start=min_date, end=max_date, freq='MS')
date_marks = {i: date.strftime('%b %Y') for i, date in enumerate(date_range)}
# Function to create and run the dashboard
def create_and_run_dashboard():
# Create a new app instance
app = Dash(__name__, suppress_callback_exceptions=True)
app.cluster_metadata = {}
color_palette = {
'background': '#1A2238', # Dark blue background
'card_bg': '#F8F8FF', # Off-white for cards
'accent1': '#FF6A3D', # Vibrant orange for highlights
'accent2': '#4ECCA3', # Teal for secondary elements
'accent3': '#9D84B7', # Lavender for tertiary elements
'text_light': '#FFFFFF', # White text
'text_dark': '#2D3748', # Dark gray text
}
# Define modern styling for containers
container_style = {
'padding': '5px',
'backgroundColor': color_palette['text_dark'],
'borderRadius': '12px',
'boxShadow': '0 4px 12px rgba(0, 0, 0, 0.15)',
'marginBottom': '25px',
'border': f'1px solid rgba(255, 255, 255, 0.2)',
}
hidden_style = {**container_style, 'display': 'none'}
visible_style = {**container_style}
# Create a modern, attractive layout
app.layout = html.Div([
# Header section with gradient background
html.Div([
html.H1(request.topic.capitalize() + " Analytics Dashboard", style={
'textAlign': 'center',
'marginBottom': '10px',
'color': color_palette['accent1'],
'fontSize': '2.5rem',
'fontWeight': '700',
'letterSpacing': '0.5px',
}),
html.Div([
html.P("Research Publication Analysis & Knowledge Mapping", style={
'textAlign': 'center',
'color': color_palette['text_light'],
'opacity': '0.8',
'fontSize': '1.2rem',
'marginTop': '0',
})
])
], style={
'background': f'linear-gradient(135deg, {color_palette["background"]}, #364156)',
'padding': '30px 20px',
'borderRadius': '12px',
'marginBottom': '25px',
'boxShadow': '0 4px 20px rgba(0, 0, 0, 0.2)',
}),
# Controls section
html.Div([
html.Div([
html.Button(
id='view-toggle',
children='Switch to Venue View',
style={
'padding': '12px 20px',
'fontSize': '1rem',
'borderRadius': '8px',
'border': 'none',
'backgroundColor': color_palette['accent1'],
'color': 'white',
'cursor': 'pointer',
'boxShadow': '0 2px 5px rgba(0, 0, 0, 0.1)',
'transition': 'all 0.3s ease',
'marginRight': '20px',
'fontWeight': '500',
}
),
html.H3("Filter by Publication Date", style={
'marginBottom': '15px',
'color': color_palette['text_dark'],
'fontSize': '1.3rem',
'fontWeight': '600',
}),
], style={'display': 'flex', 'alignItems': 'center', 'marginBottom': '15px'}),
dcc.RangeSlider(
id='date-slider',
min=0,
max=len(date_range) - 1,
value=[0, len(date_range) - 1],
marks=date_marks if len(date_marks) <= 12 else {
i: date_marks[i] for i in range(0, len(date_range), max(1, len(date_range) // 12))
},
step=1,
tooltip={"placement": "bottom", "always_visible": True},
updatemode='mouseup'
),
html.Div(id='date-range-display', style={
'textAlign': 'center',
'marginTop': '12px',
'fontSize': '1.1rem',
'fontWeight': '500',
'color': color_palette['accent1'],
})
], style={**container_style, 'marginBottom': '25px'}),
# Knowledge map - main visualization
html.Div([
dcc.Graph(
id='knowledge-map',
style={'width': '100%', 'height': '700px'},
config={'scrollZoom': True, 'displayModeBar': True, 'responsive': True}
)
], style={
**container_style,
'height': '750px',
'marginBottom': '25px',
'background': f'linear-gradient(to bottom right, {color_palette["card_bg"]}, #F0F0F8)',
}),
# Details container - appears when clicking elements
html.Div([
html.H3(id='details-title', style={
'marginBottom': '15px',
'color': color_palette['accent1'],
'fontSize': '1.4rem',
'fontWeight': '600',
}),
html.Div(id='details-content', style={
'maxHeight': '350px',
'overflowY': 'auto',
'padding': '10px',
'borderRadius': '8px',
'backgroundColor': 'rgba(255, 255, 255, 0.7)',
})
], id='details-container', style=hidden_style),
# Charts in flex container
html.Div([
html.Div([
dcc.Graph(
id='oa-pie-chart',
style={'width': '100%', 'height': '350px'},
config={'displayModeBar': False, 'responsive': True}
)
], style={
'flex': 1,
**container_style,
'margin': '0 10px',
'height': '400px',
'transition': 'transform 0.3s ease',
':hover': {'transform': 'translateY(-5px)'},
}),
html.Div([
dcc.Graph(
id='oa-status-pie-chart',
style={'width': '100%', 'height': '350px'},
config={'displayModeBar': False, 'responsive': True}
)
], style={
'flex': 1,
**container_style,
'margin': '0 10px',
'height': '400px',
'transition': 'transform 0.3s ease',
':hover': {'transform': 'translateY(-5px)'},
})
], style={'display': 'flex', 'marginBottom': '25px', 'height': '420px'}),
# Bar chart container
# Increase bar chart height and improve visibility
html.Div([
dcc.Graph(
id='type-bar-chart',
style={'width': '100%', 'height': '50vh'}, # Reduced from 60vh
config={'displayModeBar': False, 'responsive': True}
)
], style={
**container_style,
'height': '500px', # Decreased from 650px
'background': 'rgba(26, 34, 56, 1)',
'marginBottom': '10px', # Added smaller bottom margin
}),
# Store components for state
dcc.Store(id='filtered-df-info'),
dcc.Store(id='current-view', data='host'),
html.Div(id='load-trigger', children='trigger-initial-load', style={'display': 'none'})
], style={
'fontFamily': '"Poppins", "Segoe UI", Arial, sans-serif',
'backgroundColor': '#121212', # Dark background
'backgroundImage': 'none', # Remove gradient
'padding': '30px',
'maxWidth': '1800px',
'margin': '0 auto',
'minHeight': '100vh',
'color': color_palette['text_light'],
'paddingBottom': '10px',
})
@app.callback(
[Output('current-view', 'data'),
Output('view-toggle', 'children')],
[Input('view-toggle', 'n_clicks')],
[State('current-view', 'data')]
)
def toggle_view(n_clicks, current_view):
if not n_clicks:
return current_view, 'Switch to Venue View' if current_view == 'host' else 'Switch to Host View'
new_view = 'venue' if current_view == 'host' else 'host'
new_button_text = 'Switch to Host View' if new_view == 'venue' else 'Switch to Venue View'
return new_view, new_button_text
@app.callback(
Output('date-range-display', 'children'),
[Input('date-slider', 'value')]
)
def update_date_range_display(date_range_indices):
start_date = date_range[date_range_indices[0]]
end_date = date_range[date_range_indices[1]]
return f"Selected period: {start_date.strftime('%b %Y')} to {end_date.strftime('%b %Y')}"
@app.callback(
[Output('knowledge-map', 'figure'),
Output('oa-pie-chart', 'figure'),
Output('oa-status-pie-chart', 'figure'),
Output('type-bar-chart', 'figure'),
Output('filtered-df-info', 'data'),
Output('details-container', 'style')],
[Input('date-slider', 'value'),
Input('current-view', 'data'),
Input('load-trigger', 'children')] # Added trigger
)
def update_visualizations(date_range_indices, current_view, _):
filtered_df = filter_by_date_range(df, date_range_indices[0], date_range_indices[1])
knowledge_map_fig, cluster_metadata = create_knowledge_map(filtered_df, current_view)
app.cluster_metadata = cluster_metadata
filtered_info = {
'start_idx': date_range_indices[0],
'end_idx': date_range_indices[1],
'start_date': date_range[date_range_indices[0]].strftime('%Y-%m-%d'),
'end_date': date_range[date_range_indices[1]].strftime('%Y-%m-%d'),
'record_count': len(filtered_df),
'view_type': current_view
}
return (
knowledge_map_fig,
create_oa_pie_fig(filtered_df),
create_oa_status_pie_fig(filtered_df),
create_type_bar_fig(filtered_df),
filtered_info,
hidden_style
)
@app.callback(
[Output('details-container', 'style', allow_duplicate=True),
Output('details-title', 'children'),
Output('details-content', 'children')],
[Input('knowledge-map', 'clickData')],
[State('filtered-df-info', 'data')],
prevent_initial_call=True
)
def display_details(clickData, filtered_info):
if not clickData or not filtered_info:
return hidden_style, "", []
customdata = clickData['points'][0]['customdata']
view_type = filtered_info['view_type']
entity_type = "Organization" if view_type == 'host' else "Venue"
if len(customdata) >= 2 and customdata[-1] == "cluster":
count = customdata[0]
if count not in app.cluster_metadata:
return hidden_style, "", []
entities = app.cluster_metadata[count]['entities']
color = app.cluster_metadata[count]['color']['start']
table_header = [
html.Thead(html.Tr([
html.Th(f"{entity_type} Name", style={'padding': '8px'}),
html.Th(f"{entity_type} ID", style={'padding': '8px'}),
html.Th("Papers", style={'padding': '8px', 'textAlign': 'center'}),
html.Th("Open Access %", style={'padding': '8px', 'textAlign': 'center'})
], style={'backgroundColor': color_palette['accent1'], 'color': 'white'}))
]
# Update row styles
row_style = {'backgroundColor': '#232D42'} if i % 2 == 0 else {'backgroundColor': '#1A2238'}
rows = []
for i, entity in enumerate(sorted(entities, key=lambda x: x['paper_count'], reverse=True)):
row_style = {'backgroundColor': '#f9f9f9'} if i % 2 == 0 else {'backgroundColor': 'white'}
entity_name_link = html.A(
entity[f"{view_type}_organization_name" if view_type == 'host' else "venue"],
href=entity['entity_id'],
target="_blank",
style={'color': color, 'textDecoration': 'underline'}
)
entity_id_link = html.A(
entity['entity_id'].split('/')[-1],
href=entity['entity_id'],
target="_blank",
style={'color': color, 'textDecoration': 'underline'}
)
rows.append(html.Tr([
html.Td(entity_name_link, style={'padding': '8px'}),
html.Td(entity_id_link, style={'padding': '8px'}),
html.Td(entity['paper_count'], style={'padding': '8px', 'textAlign': 'center'}),
html.Td(f"{entity['is_oa']:.1%}", style={'padding': '8px', 'textAlign': 'center'})
], style=row_style))
table = html.Table(table_header + [html.Tbody(rows)], style={
'width': '100%',
'borderCollapse': 'collapse',
'boxShadow': '0 1px 3px rgba(0,0,0,0.1)'
})
return (
visible_style,
f"{entity_type}s with {count} papers",
[html.P(f"Showing {len(entities)} {entity_type.lower()}s during selected period"), table]
)
elif len(customdata) >= 6 and customdata[-1] == "entity":
entity_name = customdata[0]
entity_id = customdata[3]
cluster_count = customdata[4]
color = app.cluster_metadata[cluster_count]['color']['start']
if view_type == 'host':
entity_papers = df[df['host_organization_name'] == entity_name].copy()
else:
entity_papers = df[df['venue'] == entity_name].copy()
entity_papers = entity_papers[
(entity_papers['publication_date'] >= pd.to_datetime(filtered_info['start_date'])) &
(entity_papers['publication_date'] <= pd.to_datetime(filtered_info['end_date']))
]
entity_name_link = html.A(
entity_name,
href=entity_id,
target="_blank",
style={'color': color, 'textDecoration': 'underline', 'fontSize': '1.2em'}
)
entity_id_link = html.A(
entity_id.split('/')[-1],
href=entity_id,
target="_blank",
style={'color': color, 'textDecoration': 'underline'}
)
header = [
html.Div([
html.Span("Name: ", style={'fontWeight': 'bold'}),
entity_name_link
], style={'marginBottom': '10px'}),
html.Div([
html.Span("ID: ", style={'fontWeight': 'bold'}),
entity_id_link
], style={'marginBottom': '10px'}),
html.Div([
html.Span(f"Papers: {len(entity_papers)}", style={'marginRight': '20px'}),
], style={'marginBottom': '20px'})
]
table_header = [
html.Thead(html.Tr([
html.Th("Paper ID", style={'padding': '8px'}),
html.Th("Type", style={'padding': '8px'}),
html.Th("OA Status", style={'padding': '8px', 'textAlign': 'center'}),
html.Th("Publication Date", style={'padding': '8px', 'textAlign': 'center'})
], style={'backgroundColor': color, 'color': 'white'}))
]
rows = []
for i, (_, paper) in enumerate(entity_papers.sort_values('publication_date', ascending=False).iterrows()):
row_style = {'backgroundColor': '#232D42'} if i % 2 == 0 else {'backgroundColor': '#1A2238'}
paper_link = html.A(
paper['id'],
href=paper['id'],
target="_blank",
style={'color': color, 'textDecoration': 'underline'}
)
rows.append(html.Tr([
html.Td(paper_link, style={'padding': '8px'}),
html.Td(paper['type'], style={'padding': '8px'}),
html.Td(paper['oa_status'], style={'padding': '8px', 'textAlign': 'center'}),
html.Td(paper['publication_date'].strftime('%Y-%m-%d'), style={'padding': '8px', 'textAlign': 'center'})
], style=row_style))
table = html.Table(table_header + [html.Tbody(rows)], style={
'width': '100%',
'borderCollapse': 'collapse',
'boxShadow': '0 1px 3px rgba(0,0,0,0.1)'
})
with open("dashboard.html", "w") as f:
f.write(app.index())
print("yup saved!!")
return visible_style, f"{entity_type} Papers", header + [table]
return hidden_style, "", []
# Start the Dash app
app.run_server(debug=False, port=dashboard_port, use_reloader=False)
# Run the dashboard in a separate process
dashboard_process = threading.Thread(target=create_and_run_dashboard)
dashboard_process.daemon = True
dashboard_process.start()
# Open the browser after a delay
def open_browser():
try:
webbrowser.open_new(f"http://127.0.0.1:{dashboard_port}/")
except:
pass
threading.Timer(1.5, open_browser).start()
return {"status": "success", "message": f"Dashboard loaded successfully on port {dashboard_port}."}
except Exception as e:
# Clean up in case of failure
shutdown_existing_dashboard()
raise HTTPException(status_code=400, detail=str(e)) |