File size: 39,421 Bytes
e487cc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from dash import Dash, dcc, html, Input, Output, State
import numpy as np
import random
import math
from collections import defaultdict
import colorsys
from fastapi import HTTPException
from pydantic import BaseModel
import threading
import webbrowser
import os
import psutil
import socket
from fastapi import HTTPException, APIRouter, Request
router = APIRouter()

# Global variables to track dashboard state
dashboard_port = 8050
dashboard_process = None

# MongoDB connection and data loader function
async def load_data_from_mongodb(userId, topic, year, request:Request):
    query = {
        "userId": userId,
        "topic": topic,
        "year": year
    }
    collection = request.app.state.collection2
    document = await collection.find_one(query)
    if not document:
        raise ValueError(f"No data found for userId={userId}, topic={topic}, year={year}")
    # Extract metadata and convert to DataFrame
    metadata = document.get("metadata", [])
    df = pd.DataFrame(metadata)
    df['publication_date'] = pd.to_datetime(df['publication_date'])
    return df

# Common functions (unchanged)
def filter_by_date_range(dataframe, start_idx, end_idx):
    start_date = date_range[start_idx]
    end_date = date_range[end_idx]
    return dataframe[(dataframe['publication_date'] >= start_date) & 
                    (dataframe['publication_date'] <= end_date)]

def generate_vibrant_colors(n):
    base_colors = []
    for i in range(n):
        hue = (i / n) % 1.0
        saturation = random.uniform(0.7, 0.9)
        value = random.uniform(0.7, 0.9)
        r, g, b = colorsys.hsv_to_rgb(hue, saturation, value)
        vibrant_color = '#{:02x}{:02x}{:02x}'.format(
            int(r * 255), 
            int(g * 255), 
            int(b * 255)
        )
        end_color_r = min(255, int(r * 255 * 1.1))
        end_color_g = min(255, int(g * 255 * 1.1))
        end_color_b = min(255, int(b * 255 * 1.1))
        gradient_end = '#{:02x}{:02x}{:02x}'.format(end_color_r, end_color_g, end_color_b)
        base_colors.append({
            'start': vibrant_color,
            'end': gradient_end
        })
    extended_colors = base_colors * math.ceil(n/10)
    final_colors = []
    for i in range(n):
        color = extended_colors[i]
        jitter = random.uniform(0.9, 1.1)
        def jitter_color(hex_color):
            r, g, b = [min(255, max(0, int(int(hex_color[j:j+2], 16) * jitter))) for j in (1, 3, 5)]
            return f'rgba({r}, {g}, {b}, 0.9)'
        final_colors.append({
            'start': jitter_color(color['start']),
            'end': jitter_color(color['end']).replace('0.9', '0.8')
        })
    return final_colors

# Knowledge map creator function (unchanged)
def create_knowledge_map(filtered_df, view_type='host'):
    color_palette = {
    'background': '#1E1E1E',        # Dark background (almost black)
    'card_bg': '#1A2238',           # Bluish-black for cards (from your image)
    'accent1': '#FF6A3D',           # Orange for headings (keeping from original)
    'accent2': '#4ECCA3',           # Keeping teal for secondary elements
    'accent3': '#9D84B7',           # Keeping lavender for tertiary elements
    'text_light': '#FFFFFF',        # White text
    'text_dark': '#E0E0E0',         # Light grey text for dark backgrounds
}

    if view_type == 'host':
        group_col = 'host_organization_name'
        id_col = 'host_organization_id'
        title = "Host Organization Clusters"
    else:
        group_col = 'venue'
        id_col = 'venue_id'
        title = "Publication Venue Clusters"
    summary = filtered_df.groupby(group_col).agg(
        paper_count=('id', 'count'),
        is_oa=('is_oa', 'mean'),
        oa_status=('oa_status', lambda x: x.mode()[0] if not x.mode().empty else None),
        entity_id=(id_col, 'first')
    ).reset_index()
    paper_count_groups = defaultdict(list)
    for _, row in summary.iterrows():
        paper_count_groups[row['paper_count']].append(row)
    knowledge_map_fig = go.Figure()
    sorted_counts = sorted(paper_count_groups.keys(), reverse=True)
    vibrant_colors = generate_vibrant_colors(len(sorted_counts))
    golden_angle = np.pi * (3 - np.sqrt(5))
    spiral_coef = 150
    cluster_metadata = {}
    max_x, max_y = 500, 500
    for i, count in enumerate(sorted_counts):
        radius = np.sqrt(i) * spiral_coef
        theta = golden_angle * i
        cluster_x, cluster_y = radius * np.cos(theta), radius * np.sin(theta)
        label_offset_angle = theta + np.pi/4
        label_offset_distance = 80 + 4 * np.sqrt(len(paper_count_groups[count]))
        label_x = cluster_x + label_offset_distance * np.cos(label_offset_angle)
        label_y = cluster_y + label_offset_distance * np.sin(label_offset_angle)
        cluster_metadata[count] = {
            'center_x': cluster_x,
            'center_y': cluster_y,
            'entities': paper_count_groups[count],
            'color': vibrant_colors[i]
        }
        entities = paper_count_groups[count]
        num_entities = len(entities)
        cluster_size = min(200, max(80, 40 + 8 * np.sqrt(num_entities)))
        color = vibrant_colors[i]
        knowledge_map_fig.add_shape(
            type="circle",
            x0=cluster_x - cluster_size/2, y0=cluster_y - cluster_size/2,
            x1=cluster_x + cluster_size/2, y1=cluster_y + cluster_size/2,
            fillcolor=color['end'].replace("0.8", "0.15"),
            line=dict(color=color['start'], width=1.5),
            opacity=0.7
        )
        knowledge_map_fig.add_trace(go.Scatter(
            x=[cluster_x], y=[cluster_y],
            mode='markers',
            marker=dict(size=cluster_size, color=color['start'], opacity=0.3),
            customdata=[[count, "cluster"]],
            hoverinfo='skip'
        ))
        knowledge_map_fig.add_trace(go.Scatter(
            x=[cluster_x, label_x], y=[cluster_y, label_y],
            mode='lines',
            line=dict(color=color['start'], width=1, dash='dot'),
            hoverinfo='skip'
        ))
        knowledge_map_fig.add_annotation(
            x=label_x, y=label_y,
            text=f"{count} papers<br>{num_entities} {'orgs' if view_type == 'host' else 'venues'}",
            showarrow=False,
            font=dict(size=11, color='white'),
            bgcolor=color['start'],
            bordercolor='white',
            borderwidth=1,
            opacity=0.9
        )
        entities_sorted = sorted(entities, key=lambda x: x[group_col])
        inner_spiral_coef = 0.4
        for j, entity_data in enumerate(entities_sorted):
            spiral_radius = np.sqrt(j) * cluster_size * inner_spiral_coef / np.sqrt(num_entities + 1)
            spiral_angle = golden_angle * j
            jitter_radius = random.uniform(0.9, 1.1) * spiral_radius
            jitter_angle = spiral_angle + random.uniform(-0.1, 0.1)
            entity_x = cluster_x + jitter_radius * np.cos(jitter_angle)
            entity_y = cluster_y + jitter_radius * np.sin(jitter_angle)
            node_size = min(18, max(8, np.sqrt(entity_data['paper_count']) * 1.5))
            knowledge_map_fig.add_trace(go.Scatter(
                x=[entity_x], y=[entity_y],
                mode='markers',
                marker=dict(
                    size=node_size,
                    color=color['start'],
                    line=dict(color='rgba(255, 255, 255, 0.9)', width=1.5)
                ),
                customdata=[[
                    entity_data[group_col],
                    entity_data['paper_count'],
                    entity_data['is_oa'],
                    entity_data['entity_id'],
                    count,
                    "entity"
                ]],
                hovertemplate=(
                    f"<b>{entity_data[group_col]}</b><br>"
                    f"Papers: {entity_data['paper_count']}<br>"
                    f"Open Access: {entity_data['is_oa']:.1%}<extra></extra>"
                )
            ))
    max_x = max([abs(cluster['center_x']) for cluster in cluster_metadata.values()]) + 150 if cluster_metadata else 500
    max_y = max([abs(cluster['center_y']) for cluster in cluster_metadata.values()]) + 150 if cluster_metadata else 500
   # Update knowledge_map_fig layout
    knowledge_map_fig.update_layout(
    title=dict(
        text=title, 
        font=dict(size=22, family='"Poppins", sans-serif', color=color_palette['accent1'])  # Orange title
    ),
    plot_bgcolor='rgba(26, 34, 56, 1)',  # Bluish-black background
    paper_bgcolor='rgba(26, 34, 56, 0.7)',
    xaxis=dict(range=[-max(700, max_x), max(700, max_x)], showticklabels=False, showgrid=False),
    yaxis=dict(range=[-max(500, max_y), max(500, max_y)], showticklabels=False, showgrid=False),
    margin=dict(l=10, r=10, t=60, b=10),
    height=700,
    hovermode='closest',
    showlegend=False,
    font=dict(family='"Poppins", sans-serif', color=color_palette['text_light']),  # Light text
)
    return knowledge_map_fig, cluster_metadata

# Other chart functions (unchanged)
def create_oa_pie_fig(filtered_df):
    color_palette = {
        'background': '#1A2238',  # Dark blue background
        'card_bg': '#1A2238',     # Changed to match the other chart
        'accent1': '#FF6A3D',     # Vibrant orange for highlights
        'accent2': '#4ECCA3',     # Teal for secondary elements
        'accent3': '#9D84B7',     # Lavender for tertiary elements
        'text_light': '#FFFFFF',  # White text
        'text_dark': '#FFFFFF',   # Changed to white for better contrast
    }
    
    fig = px.pie(
        filtered_df, names='is_oa', title="Overall Open Access Status",
        labels={True: "Open Access", False: "Not Open Access"},
        color_discrete_sequence=[color_palette['accent2'], color_palette['accent1']]
    )
    
    fig.update_traces(
        textinfo='label+percent', 
        textfont=dict(size=14, family='"Poppins", sans-serif'),
        marker=dict(line=dict(color='#1A2238', width=2))  # Match background color
    )
    
    fig.update_layout(
        title=dict(
            text="Overall Open Access Status", 
            font=dict(size=18, family='"Poppins", sans-serif', color=color_palette['accent1'])  # Orange title
        ),
        font=dict(family='"Poppins", sans-serif', color=color_palette['text_light']),
        paper_bgcolor=color_palette['background'],  # Dark background
        plot_bgcolor=color_palette['background'],   # Dark background
        margin=dict(t=50, b=20, l=20, r=20),
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=-0.2,
            xanchor="center",
            x=0.5,
            font=dict(size=12, color=color_palette['text_light'])
        )
    )
    
    return fig
def create_oa_status_pie_fig(filtered_df):
    custom_colors = [
       "#9D84B7", 
        '#4DADFF', 
        '#FFD166', 
        '#06D6A0', 
        '#EF476F'
    ]
    fig = px.pie(
        filtered_df, 
        names='oa_status', 
        title="Open Access Status Distribution",
        color_discrete_sequence=custom_colors
    )
    fig.update_traces(
        textinfo='label+percent', 
        insidetextorientation='radial',
        textfont=dict(size=14, family='"Poppins", sans-serif'),
        marker=dict(line=dict(color='#FFFFFF', width=2))
    )
    fig.update_layout(
        title=dict(
            text="Open Access Status Distribution", 
            font=dict(size=18, family='"Poppins", sans-serif', color="#FF6A3D")
        ),
        font=dict(family='"Poppins", sans-serif', color='#FFFFFF'),
        paper_bgcolor='#1A2238',  # Bluish-black background
        plot_bgcolor='#1A2238',
        margin=dict(t=50, b=20, l=20, r=20),
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=-0.2,
            xanchor="center",
            x=0.5,
            font=dict(size=12, color='#FFFFFF')
        )
    )
    return fig
def create_type_bar_fig(filtered_df):
    type_counts = filtered_df['type'].value_counts()
    vibrant_colors = [
        '#4361EE', '#3A0CA3', '#4CC9F0', 
        '#F72585', '#7209B7', '#B5179E', 
        '#480CA8', '#560BAD', '#F77F00'
    ]
    fig = px.bar(
        type_counts, 
        title="Publication Types",
        labels={'value': 'Count', 'index': 'Type'},
        color=type_counts.index,
        color_discrete_sequence=vibrant_colors[:len(type_counts)]
    )
    fig.update_layout(
        title=dict(
            text="Publication Types", 
            font=dict(size=20, family='"Poppins", sans-serif', color="#FF6A3D")  # Larger font size
        ),
        xaxis_title="Type", 
        yaxis_title="Count",
        font=dict(family='"Poppins", sans-serif', color="#FFFFFF", size=14),  # Increased font size
        paper_bgcolor='#1A2238',  # Consistent dark background
        plot_bgcolor='#1A2238',  # Consistent dark background
        margin=dict(t=70, b=60, l=60, r=40),  # Increased margins
        xaxis=dict(
            tickfont=dict(size=14, color="#FFFFFF"),  # Increased tick font size
            tickangle=-45,
            gridcolor='rgba(255, 255, 255, 0.1)'  # Lighter grid lines
        ),
        yaxis=dict(
            tickfont=dict(size=14, color="#FFFFFF"),  # Increased tick font size
            gridcolor='rgba(255, 255, 255, 0.1)'  # Lighter grid lines
        ),
        bargap=0.3,  # Increased bar gap
    )
    fig.update_traces(
        marker_line_width=1,
        marker_line_color='rgba(0, 0, 0, 0.5)',
        opacity=0.9,
        hovertemplate='%{y} publications<extra></extra>',
        texttemplate='%{y}',  # Add text labels
        textposition='outside',  # Position labels outside bars
        textfont=dict(size=14, color='white')  # Text label formatting
    )
    return fig

# Function to check if port is in use
def is_port_in_use(port):
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        return s.connect_ex(('localhost', port)) == 0

# Function to find a free port
def find_free_port(start_port=8050):
    port = start_port
    while is_port_in_use(port):
        port += 1
    return port

# Function to shutdown any existing dashboard
def shutdown_existing_dashboard():
    global dashboard_process
    
    # First, check if our port is in use
    if is_port_in_use(dashboard_port):
        try:
            # Kill processes using the port
            for proc in psutil.process_iter(['pid', 'name', 'connections']):
                try:
                    for conn in proc.connections():
                        if conn.laddr.port == dashboard_port:
                            print(f"Terminating process {proc.pid} using port {dashboard_port}")
                            proc.terminate()
                            proc.wait(timeout=3)
                except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
                    pass
        except Exception as e:
            print(f"Error freeing port {dashboard_port}: {e}")
    
    # If we're tracking a dashboard process, try to terminate it
    if dashboard_process is not None:
        try:
            # Kill the process if it's still running
            if dashboard_process.is_alive():
                parent = psutil.Process(os.getpid())
                children = parent.children(recursive=True)
                for process in children:
                    try:
                        process.terminate()
                    except:
                        pass
            dashboard_process = None
        except Exception as e:
            print(f"Error terminating dashboard process: {e}")
            dashboard_process = None  # Reset the reference anyway

# Pydantic model for request validation
class DashboardRequest(BaseModel):
    userId: str
    topic: str
    year: int

@router.post("/load_and_display_dashboard/")
async def load_and_display_dashboard(request: DashboardRequest, req:Request):
    global dashboard_process, dashboard_port
    
    # Make sure any existing dashboard is shut down
    shutdown_existing_dashboard()
    
    # Find a free port
    dashboard_port = find_free_port()
    
    try:
        # Load data from MongoDB
        df = await load_data_from_mongodb(request.userId, request.topic, request.year, req)
        
        # Get date range for the slider
        global min_date, max_date, date_range, date_marks
        min_date = df['publication_date'].min()
        max_date = df['publication_date'].max()
        date_range = pd.date_range(start=min_date, end=max_date, freq='MS')
        date_marks = {i: date.strftime('%b %Y') for i, date in enumerate(date_range)}
        
        # Function to create and run the dashboard
        def create_and_run_dashboard():
            # Create a new app instance
            app = Dash(__name__, suppress_callback_exceptions=True)
            app.cluster_metadata = {}
            color_palette = {
                    'background': '#1A2238',  # Dark blue background
                    'card_bg': '#F8F8FF',      # Off-white for cards
                    'accent1': '#FF6A3D',      # Vibrant orange for highlights
                    'accent2': '#4ECCA3',      # Teal for secondary elements
                    'accent3': '#9D84B7',      # Lavender for tertiary elements
                    'text_light': '#FFFFFF',   # White text
                    'text_dark': '#2D3748',    # Dark gray text
                }

                # Define modern styling for containers
            container_style = {
                    'padding': '5px', 
                    'backgroundColor': color_palette['text_dark'], 
                    'borderRadius': '12px', 
                    'boxShadow': '0 4px 12px rgba(0, 0, 0, 0.15)', 
                    'marginBottom': '25px',
                    'border': f'1px solid rgba(255, 255, 255, 0.2)',
                    
                }

            hidden_style = {**container_style, 'display': 'none'}
            visible_style = {**container_style}

            # Create a modern, attractive layout
            app.layout = html.Div([
                    # Header section with gradient background
                    html.Div([
                        html.H1(request.topic.capitalize() + " Analytics Dashboard", style={
                            'textAlign': 'center', 
                            'marginBottom': '10px',
                            'color': color_palette['accent1'],
                            'fontSize': '2.5rem',
                            'fontWeight': '700',
                            'letterSpacing': '0.5px',
                        }),
                        html.Div([
                            html.P("Research Publication Analysis & Knowledge Mapping", style={
                                'textAlign': 'center',
                                'color': color_palette['text_light'],
                                'opacity': '0.8',
                                'fontSize': '1.2rem',
                                'marginTop': '0',
                            })
                        ])
                    ], style={
                        'background': f'linear-gradient(135deg, {color_palette["background"]}, #364156)',
                        'padding': '30px 20px',
                        'borderRadius': '12px',
                        'marginBottom': '25px',
                        'boxShadow': '0 4px 20px rgba(0, 0, 0, 0.2)',
                    }),
                    
                    # Controls section
                    html.Div([
                        html.Div([
                            html.Button(
                                id='view-toggle',
                                children='Switch to Venue View',
                                style={
                                    'padding': '12px 20px',
                                    'fontSize': '1rem',
                                    'borderRadius': '8px',
                                    'border': 'none',
                                    'backgroundColor': color_palette['accent1'],
                                    'color': 'white',
                                    'cursor': 'pointer',
                                    'boxShadow': '0 2px 5px rgba(0, 0, 0, 0.1)',
                                    'transition': 'all 0.3s ease',
                                    'marginRight': '20px',
                                    'fontWeight': '500',
                                }
                            ),
                            html.H3("Filter by Publication Date", style={
                                'marginBottom': '15px',
                                'color': color_palette['text_dark'],
                                'fontSize': '1.3rem',
                                'fontWeight': '600',
                            }),
                        ], style={'display': 'flex', 'alignItems': 'center', 'marginBottom': '15px'}),
                        
                        dcc.RangeSlider(
                            id='date-slider',
                            min=0,
                            max=len(date_range) - 1,
                            value=[0, len(date_range) - 1],
                            marks=date_marks if len(date_marks) <= 12 else {
                                i: date_marks[i] for i in range(0, len(date_range), max(1, len(date_range) // 12))
                            },
                            step=1,
                            tooltip={"placement": "bottom", "always_visible": True},
                            updatemode='mouseup'
                        ),
                        html.Div(id='date-range-display', style={
                            'textAlign': 'center', 
                            'marginTop': '12px', 
                            'fontSize': '1.1rem',
                            'fontWeight': '500',
                            'color': color_palette['accent1'],
                        })
                    ], style={**container_style, 'marginBottom': '25px'}),
                    
                    # Knowledge map - main visualization
                    html.Div([
                        dcc.Graph(
                            id='knowledge-map',
                            style={'width': '100%', 'height': '700px'},
                            config={'scrollZoom': True, 'displayModeBar': True, 'responsive': True}
                        )
                    ], style={
                        **container_style, 
                        'height': '750px', 
                        'marginBottom': '25px',
                        'background': f'linear-gradient(to bottom right, {color_palette["card_bg"]}, #F0F0F8)',
                    }),
                    
                    # Details container - appears when clicking elements
                    html.Div([
                        html.H3(id='details-title', style={
                            'marginBottom': '15px',
                            'color': color_palette['accent1'],
                            'fontSize': '1.4rem',
                            'fontWeight': '600',
                        }),
                        html.Div(id='details-content', style={
                            'maxHeight': '350px', 
                            'overflowY': 'auto',
                            'padding': '10px',
                            'borderRadius': '8px',
                            'backgroundColor': 'rgba(255, 255, 255, 0.7)',
                        })
                    ], id='details-container', style=hidden_style),
                    
                    # Charts in flex container
                    html.Div([
                        html.Div([
                            dcc.Graph(
                                id='oa-pie-chart', 
                                style={'width': '100%', 'height': '350px'},
                                config={'displayModeBar': False, 'responsive': True}
                            )
                        ], style={
                            'flex': 1, 
                            **container_style, 
                            'margin': '0 10px', 
                            'height': '400px',
                            'transition': 'transform 0.3s ease',
                            ':hover': {'transform': 'translateY(-5px)'},
                        }),
                        html.Div([
                            dcc.Graph(
                                id='oa-status-pie-chart', 
                                style={'width': '100%', 'height': '350px'},
                                config={'displayModeBar': False, 'responsive': True}
                            )
                        ], style={
                            'flex': 1, 
                            **container_style, 
                            'margin': '0 10px', 
                            'height': '400px',
                            'transition': 'transform 0.3s ease',
                            ':hover': {'transform': 'translateY(-5px)'},
                        })
                    ], style={'display': 'flex', 'marginBottom': '25px', 'height': '420px'}),
                    
                    # Bar chart container
                  # Increase bar chart height and improve visibility
                    html.Div([
                            dcc.Graph(
                                id='type-bar-chart', 
                                style={'width': '100%', 'height': '50vh'},  # Reduced from 60vh
                                config={'displayModeBar': False, 'responsive': True}
                            )
                        ], style={
                            **container_style,
                            'height': '500px',  # Decreased from 650px
                            'background': 'rgba(26, 34, 56, 1)',
                            'marginBottom': '10px',  # Added smaller bottom margin
                        }), 
                    # Store components for state
                    dcc.Store(id='filtered-df-info'),
                    dcc.Store(id='current-view', data='host'),
                    html.Div(id='load-trigger', children='trigger-initial-load', style={'display': 'none'})
                ], style={
                    'fontFamily': '"Poppins", "Segoe UI", Arial, sans-serif',
                    'backgroundColor': '#121212',  # Dark background
                    'backgroundImage': 'none',     # Remove gradient
                    'padding': '30px',
                    'maxWidth': '1800px',
                    'margin': '0 auto',
                    'minHeight': '100vh',
                    'color': color_palette['text_light'],
                    'paddingBottom': '10px', 
                })
                            

            
            @app.callback(

                [Output('current-view', 'data'),

                 Output('view-toggle', 'children')],

                [Input('view-toggle', 'n_clicks')],

                [State('current-view', 'data')]

            )
            def toggle_view(n_clicks, current_view):
                if not n_clicks:
                    return current_view, 'Switch to Venue View' if current_view == 'host' else 'Switch to Host View'
                new_view = 'venue' if current_view == 'host' else 'host'
                new_button_text = 'Switch to Host View' if new_view == 'venue' else 'Switch to Venue View'
                return new_view, new_button_text
            
            @app.callback(

                Output('date-range-display', 'children'),

                [Input('date-slider', 'value')]

            )
            def update_date_range_display(date_range_indices):
                start_date = date_range[date_range_indices[0]]
                end_date = date_range[date_range_indices[1]]
                return f"Selected period: {start_date.strftime('%b %Y')} to {end_date.strftime('%b %Y')}"
            
            @app.callback(

                [Output('knowledge-map', 'figure'),

                 Output('oa-pie-chart', 'figure'),

                 Output('oa-status-pie-chart', 'figure'),

                 Output('type-bar-chart', 'figure'),

                 Output('filtered-df-info', 'data'),

                 Output('details-container', 'style')],

                [Input('date-slider', 'value'),

                 Input('current-view', 'data'),

                 Input('load-trigger', 'children')]  # Added trigger

            )
            def update_visualizations(date_range_indices, current_view, _):
                filtered_df = filter_by_date_range(df, date_range_indices[0], date_range_indices[1])
                knowledge_map_fig, cluster_metadata = create_knowledge_map(filtered_df, current_view)
                app.cluster_metadata = cluster_metadata
                filtered_info = {
                    'start_idx': date_range_indices[0],
                    'end_idx': date_range_indices[1],
                    'start_date': date_range[date_range_indices[0]].strftime('%Y-%m-%d'),
                    'end_date': date_range[date_range_indices[1]].strftime('%Y-%m-%d'),
                    'record_count': len(filtered_df),
                    'view_type': current_view
                }
                return (
                    knowledge_map_fig,
                    create_oa_pie_fig(filtered_df),
                    create_oa_status_pie_fig(filtered_df),
                    create_type_bar_fig(filtered_df),
                    filtered_info,
                    hidden_style
                )
            
            @app.callback(

                [Output('details-container', 'style', allow_duplicate=True),

                 Output('details-title', 'children'),

                 Output('details-content', 'children')],

                [Input('knowledge-map', 'clickData')],

                [State('filtered-df-info', 'data')],

                prevent_initial_call=True

            )
            def display_details(clickData, filtered_info):
                if not clickData or not filtered_info:
                    return hidden_style, "", []
                customdata = clickData['points'][0]['customdata']
                view_type = filtered_info['view_type']
                entity_type = "Organization" if view_type == 'host' else "Venue"
                if len(customdata) >= 2 and customdata[-1] == "cluster":
                    count = customdata[0]
                    if count not in app.cluster_metadata:
                        return hidden_style, "", []
                    entities = app.cluster_metadata[count]['entities']
                    color = app.cluster_metadata[count]['color']['start']
                    table_header = [
                        html.Thead(html.Tr([
                            html.Th(f"{entity_type} Name", style={'padding': '8px'}),
                            html.Th(f"{entity_type} ID", style={'padding': '8px'}),
                            html.Th("Papers", style={'padding': '8px', 'textAlign': 'center'}),
                            html.Th("Open Access %", style={'padding': '8px', 'textAlign': 'center'})
                        ], style={'backgroundColor': color_palette['accent1'], 'color': 'white'}))
                    ]

                    # Update row styles
                    row_style = {'backgroundColor': '#232D42'} if i % 2 == 0 else {'backgroundColor': '#1A2238'}
                    rows = []
                    for i, entity in enumerate(sorted(entities, key=lambda x: x['paper_count'], reverse=True)):
                        row_style = {'backgroundColor': '#f9f9f9'} if i % 2 == 0 else {'backgroundColor': 'white'}
                        entity_name_link = html.A(
                            entity[f"{view_type}_organization_name" if view_type == 'host' else "venue"],
                            href=entity['entity_id'],
                            target="_blank",
                            style={'color': color, 'textDecoration': 'underline'}
                        )
                        entity_id_link = html.A(
                            entity['entity_id'].split('/')[-1],
                            href=entity['entity_id'],
                            target="_blank",
                            style={'color': color, 'textDecoration': 'underline'}
                        )
                        rows.append(html.Tr([
                            html.Td(entity_name_link, style={'padding': '8px'}),
                            html.Td(entity_id_link, style={'padding': '8px'}),
                            html.Td(entity['paper_count'], style={'padding': '8px', 'textAlign': 'center'}),
                            html.Td(f"{entity['is_oa']:.1%}", style={'padding': '8px', 'textAlign': 'center'})
                        ], style=row_style))
                    table = html.Table(table_header + [html.Tbody(rows)], style={
                        'width': '100%',
                        'borderCollapse': 'collapse',
                        'boxShadow': '0 1px 3px rgba(0,0,0,0.1)'
                    })
                    return (
                        visible_style,
                        f"{entity_type}s with {count} papers",
                        [html.P(f"Showing {len(entities)} {entity_type.lower()}s during selected period"), table]
                    )
                elif len(customdata) >= 6 and customdata[-1] == "entity":
                    entity_name = customdata[0]
                    entity_id = customdata[3]
                    cluster_count = customdata[4]
                    color = app.cluster_metadata[cluster_count]['color']['start']
                    if view_type == 'host':
                        entity_papers = df[df['host_organization_name'] == entity_name].copy()
                    else:
                        entity_papers = df[df['venue'] == entity_name].copy()
                    entity_papers = entity_papers[
                        (entity_papers['publication_date'] >= pd.to_datetime(filtered_info['start_date'])) & 
                        (entity_papers['publication_date'] <= pd.to_datetime(filtered_info['end_date']))
                    ]
                    entity_name_link = html.A(
                        entity_name,
                        href=entity_id,
                        target="_blank",
                        style={'color': color, 'textDecoration': 'underline', 'fontSize': '1.2em'}
                    )
                    entity_id_link = html.A(
                        entity_id.split('/')[-1],
                        href=entity_id,
                        target="_blank",
                        style={'color': color, 'textDecoration': 'underline'}
                    )
                    header = [
                        html.Div([
                            html.Span("Name: ", style={'fontWeight': 'bold'}),
                            entity_name_link
                        ], style={'marginBottom': '10px'}),
                        html.Div([
                            html.Span("ID: ", style={'fontWeight': 'bold'}),
                            entity_id_link
                        ], style={'marginBottom': '10px'}),
                        html.Div([
                            html.Span(f"Papers: {len(entity_papers)}", style={'marginRight': '20px'}),
                        ], style={'marginBottom': '20px'})
                    ]
                    table_header = [
                        html.Thead(html.Tr([
                            html.Th("Paper ID", style={'padding': '8px'}),
                            html.Th("Type", style={'padding': '8px'}),
                            html.Th("OA Status", style={'padding': '8px', 'textAlign': 'center'}),
                            html.Th("Publication Date", style={'padding': '8px', 'textAlign': 'center'})
                        ], style={'backgroundColor': color, 'color': 'white'}))
                    ]
                    rows = []
                    for i, (_, paper) in enumerate(entity_papers.sort_values('publication_date', ascending=False).iterrows()):
                        row_style = {'backgroundColor': '#232D42'} if i % 2 == 0 else {'backgroundColor': '#1A2238'}
                        paper_link = html.A(
                            paper['id'],
                            href=paper['id'],
                            target="_blank",
                            style={'color': color, 'textDecoration': 'underline'}
                        )
                        rows.append(html.Tr([
                            html.Td(paper_link, style={'padding': '8px'}),
                            html.Td(paper['type'], style={'padding': '8px'}),
                            html.Td(paper['oa_status'], style={'padding': '8px', 'textAlign': 'center'}),
                            html.Td(paper['publication_date'].strftime('%Y-%m-%d'), style={'padding': '8px', 'textAlign': 'center'})
                        ], style=row_style))
                    table = html.Table(table_header + [html.Tbody(rows)], style={
                        'width': '100%',
                        'borderCollapse': 'collapse',
                        'boxShadow': '0 1px 3px rgba(0,0,0,0.1)'
                    })
                    with open("dashboard.html", "w") as f:
                        f.write(app.index())
                    print("yup saved!!")    
                    return visible_style, f"{entity_type} Papers", header + [table]
                return hidden_style, "", []
            
            # Start the Dash app
            app.run_server(debug=False, port=dashboard_port, use_reloader=False)
        
        # Run the dashboard in a separate process
        dashboard_process = threading.Thread(target=create_and_run_dashboard)
        dashboard_process.daemon = True
        dashboard_process.start()
        
        # Open the browser after a delay
        def open_browser():
            try:
                webbrowser.open_new(f"http://127.0.0.1:{dashboard_port}/")
            except:
                pass
        
        threading.Timer(1.5, open_browser).start()
        
        return {"status": "success", "message": f"Dashboard loaded successfully on port {dashboard_port}."}
    
    except Exception as e:
        # Clean up in case of failure
        shutdown_existing_dashboard()
        raise HTTPException(status_code=400, detail=str(e))