qa_roberta / app.py
Iosif24's picture
Create app.py
6e7bd9e
raw
history blame
514 Bytes
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
import gradio as grad
import ast
model_name = "deepset/roberta-base-squad2"
my_pipeline = pipeline('question-answering', model=model_name, tokenizer=model_name)
def answer_question(question, context):
text = "{"+"'question': '"+question"', 'context': '"+context+"'}"
di=ast.literal_eval(text)
response = my_pipeline(di)
return response
grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()