Synced repo using 'sync_with_huggingface' Github Action
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from typing import Generator
|
2 |
-
from utils import validate_api_key, get_info, validate_uri, extract_code_blocks
|
3 |
from langchain_community.utilities import SQLDatabase
|
4 |
from var import system_prompt, markdown_info, query_output, groq_models
|
5 |
import streamlit as st
|
@@ -10,6 +10,7 @@ st.set_page_config(layout="wide")
|
|
10 |
# Initialize chat history and selected model
|
11 |
if "messages" not in st.session_state:
|
12 |
st.session_state.messages = []
|
|
|
13 |
|
14 |
if "selected_model" not in st.session_state:
|
15 |
st.session_state.selected_model = None
|
@@ -29,6 +30,7 @@ else:
|
|
29 |
|
30 |
if st.session_state.selected_model != model:
|
31 |
st.session_state.messages = []
|
|
|
32 |
st.session_state.selected_model = model
|
33 |
|
34 |
uri = st.sidebar.text_input("Enter SQL Database URI")
|
@@ -37,7 +39,7 @@ if not validate_uri(uri):
|
|
37 |
st.sidebar.error("Enter valid URI")
|
38 |
else:
|
39 |
st.sidebar.success("URI is valid")
|
40 |
-
db_info =
|
41 |
markdown_info = markdown_info.format(**db_info)
|
42 |
with st.expander("SQL Database Info"):
|
43 |
st.markdown(markdown_info)
|
@@ -53,9 +55,12 @@ if validate_api_key(api_key) and validate_uri(uri):
|
|
53 |
avatar = {"user": 'π¨βπ»', "assistant": 'π€', "executor": 'π’'}
|
54 |
|
55 |
# Display chat messages from history on app rerun
|
56 |
-
for message in st.session_state.messages:
|
57 |
with st.chat_message(message["role"], avatar=avatar[message["role"]]):
|
58 |
st.markdown(message["content"])
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
def generate_chat_responses(chat_completion) -> Generator[str, None, None]:
|
@@ -109,17 +114,19 @@ if validate_api_key(api_key) and validate_uri(uri):
|
|
109 |
else:
|
110 |
query_output_truncated = query_output.format(result=result)
|
111 |
|
|
|
|
|
112 |
# Append the llm response to session_state.messages
|
113 |
if isinstance(llm_response, str):
|
114 |
st.session_state.messages.append(
|
115 |
-
{"role": "assistant", "content": llm_response
|
116 |
else:
|
117 |
# Handle the case where llm_response is not a string
|
118 |
combined_response = "\n".join(str(item) for item in llm_response)
|
119 |
st.session_state.messages.append(
|
120 |
-
{"role": "assistant", "content": combined_response
|
121 |
|
122 |
-
st.sidebar.button("Clear Chat History", on_click=lambda: st.session_state.messages.clear())
|
123 |
|
124 |
else:
|
125 |
st.error("Please enter valid Groq API Key and URI in the sidebar.")
|
|
|
1 |
from typing import Generator
|
2 |
+
from utils import validate_api_key, get_info, validate_uri, extract_code_blocks, get_info_sqlalchemy
|
3 |
from langchain_community.utilities import SQLDatabase
|
4 |
from var import system_prompt, markdown_info, query_output, groq_models
|
5 |
import streamlit as st
|
|
|
10 |
# Initialize chat history and selected model
|
11 |
if "messages" not in st.session_state:
|
12 |
st.session_state.messages = []
|
13 |
+
st.session_state.sql_result = []
|
14 |
|
15 |
if "selected_model" not in st.session_state:
|
16 |
st.session_state.selected_model = None
|
|
|
30 |
|
31 |
if st.session_state.selected_model != model:
|
32 |
st.session_state.messages = []
|
33 |
+
st.session_state.sql_result = []
|
34 |
st.session_state.selected_model = model
|
35 |
|
36 |
uri = st.sidebar.text_input("Enter SQL Database URI")
|
|
|
39 |
st.sidebar.error("Enter valid URI")
|
40 |
else:
|
41 |
st.sidebar.success("URI is valid")
|
42 |
+
db_info = get_info_sqlalchemy(uri)
|
43 |
markdown_info = markdown_info.format(**db_info)
|
44 |
with st.expander("SQL Database Info"):
|
45 |
st.markdown(markdown_info)
|
|
|
55 |
avatar = {"user": 'π¨βπ»', "assistant": 'π€', "executor": 'π’'}
|
56 |
|
57 |
# Display chat messages from history on app rerun
|
58 |
+
for i, message in enumerate(st.session_state.messages):
|
59 |
with st.chat_message(message["role"], avatar=avatar[message["role"]]):
|
60 |
st.markdown(message["content"])
|
61 |
+
if (i+1)%2 == 0:
|
62 |
+
with st.chat_message("SQL Executor", avatar=avatar["executor"]):
|
63 |
+
st.markdown(st.session_state.sql_result[i//2])
|
64 |
|
65 |
|
66 |
def generate_chat_responses(chat_completion) -> Generator[str, None, None]:
|
|
|
114 |
else:
|
115 |
query_output_truncated = query_output.format(result=result)
|
116 |
|
117 |
+
st.session_state.sql_result.append(query_output_truncated)
|
118 |
+
|
119 |
# Append the llm response to session_state.messages
|
120 |
if isinstance(llm_response, str):
|
121 |
st.session_state.messages.append(
|
122 |
+
{"role": "assistant", "content": llm_response})
|
123 |
else:
|
124 |
# Handle the case where llm_response is not a string
|
125 |
combined_response = "\n".join(str(item) for item in llm_response)
|
126 |
st.session_state.messages.append(
|
127 |
+
{"role": "assistant", "content": combined_response})
|
128 |
|
129 |
+
st.sidebar.button("Clear Chat History", on_click=lambda: st.session_state.messages.clear() and st.session_state.sql_result.clear())
|
130 |
|
131 |
else:
|
132 |
st.error("Please enter valid Groq API Key and URI in the sidebar.")
|
utils.py
CHANGED
@@ -1,9 +1,21 @@
|
|
1 |
import requests
|
2 |
from langchain_community.utilities import SQLDatabase
|
3 |
from langchain_community.tools.sql_database.tool import ListSQLDatabaseTool, InfoSQLDatabaseTool
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import re
|
5 |
|
6 |
def get_all_groq_model(api_key:str=None) -> list:
|
|
|
7 |
if api_key is None:
|
8 |
raise ValueError("API key is required")
|
9 |
url = "https://api.groq.com/openai/v1/models"
|
@@ -21,6 +33,7 @@ def get_all_groq_model(api_key:str=None) -> list:
|
|
21 |
return model_ids
|
22 |
|
23 |
def validate_api_key(api_key:str) -> bool:
|
|
|
24 |
if len(api_key) == 0:
|
25 |
return False
|
26 |
try:
|
@@ -30,6 +43,7 @@ def validate_api_key(api_key:str) -> bool:
|
|
30 |
return False
|
31 |
|
32 |
def validate_uri(uri:str) -> bool:
|
|
|
33 |
try:
|
34 |
SQLDatabase.from_uri(uri)
|
35 |
return True
|
@@ -37,6 +51,7 @@ def validate_uri(uri:str) -> bool:
|
|
37 |
return False
|
38 |
|
39 |
def get_info(uri:str) -> dict[str, str] | None:
|
|
|
40 |
db = SQLDatabase.from_uri(uri)
|
41 |
dialect = db.dialect
|
42 |
# List all the tables accessible to the user.
|
@@ -45,10 +60,95 @@ def get_info(uri:str) -> dict[str, str] | None:
|
|
45 |
tables_schemas = InfoSQLDatabaseTool(db=db).invoke(access_tables)
|
46 |
return {'sql_dialect': dialect, 'tables': access_tables, 'tables_schema': tables_schemas}
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def extract_code_blocks(text):
|
49 |
pattern = r"```(?:\w+)?\n(.*?)\n```"
|
50 |
matches = re.findall(pattern, text, re.DOTALL)
|
51 |
return matches
|
52 |
|
53 |
if __name__ == "__main__":
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import requests
|
2 |
from langchain_community.utilities import SQLDatabase
|
3 |
from langchain_community.tools.sql_database.tool import ListSQLDatabaseTool, InfoSQLDatabaseTool
|
4 |
+
from sqlalchemy import (
|
5 |
+
create_engine,
|
6 |
+
MetaData,
|
7 |
+
inspect,
|
8 |
+
Table,
|
9 |
+
select,
|
10 |
+
distinct
|
11 |
+
)
|
12 |
+
from sqlalchemy.schema import CreateTable
|
13 |
+
from sqlalchemy.exc import ProgrammingError
|
14 |
+
from sqlalchemy.engine import Engine
|
15 |
import re
|
16 |
|
17 |
def get_all_groq_model(api_key:str=None) -> list:
|
18 |
+
"""Uses Groq API to fetch all the available models."""
|
19 |
if api_key is None:
|
20 |
raise ValueError("API key is required")
|
21 |
url = "https://api.groq.com/openai/v1/models"
|
|
|
33 |
return model_ids
|
34 |
|
35 |
def validate_api_key(api_key:str) -> bool:
|
36 |
+
"""Validates the Groq API key using the get_all_groq_model function."""
|
37 |
if len(api_key) == 0:
|
38 |
return False
|
39 |
try:
|
|
|
43 |
return False
|
44 |
|
45 |
def validate_uri(uri:str) -> bool:
|
46 |
+
"""Validates the SQL Database URI using the SQLDatabase.from_uri function."""
|
47 |
try:
|
48 |
SQLDatabase.from_uri(uri)
|
49 |
return True
|
|
|
51 |
return False
|
52 |
|
53 |
def get_info(uri:str) -> dict[str, str] | None:
|
54 |
+
"""Gets the dialect name, accessible tables and table schemas using the SQLDatabase toolkit"""
|
55 |
db = SQLDatabase.from_uri(uri)
|
56 |
dialect = db.dialect
|
57 |
# List all the tables accessible to the user.
|
|
|
60 |
tables_schemas = InfoSQLDatabaseTool(db=db).invoke(access_tables)
|
61 |
return {'sql_dialect': dialect, 'tables': access_tables, 'tables_schema': tables_schemas}
|
62 |
|
63 |
+
def get_sample_rows(engine:Engine, table:Table, row_count: int = 3) -> str:
|
64 |
+
"""Gets the sample rows of a table using the SQLAlchemy engine"""
|
65 |
+
# build the select command
|
66 |
+
command = select(table).limit(row_count)
|
67 |
+
|
68 |
+
# save the columns in string format
|
69 |
+
columns_str = "\t".join([col.name for col in table.columns])
|
70 |
+
|
71 |
+
try:
|
72 |
+
# get the sample rows
|
73 |
+
with engine.connect() as connection:
|
74 |
+
sample_rows_result = connection.execute(command) # type: ignore
|
75 |
+
# shorten values in the sample rows
|
76 |
+
sample_rows = list(
|
77 |
+
map(lambda ls: [str(i)[:100] for i in ls], sample_rows_result)
|
78 |
+
)
|
79 |
+
|
80 |
+
# save the sample rows in string format
|
81 |
+
sample_rows_str = "\n".join(["\t".join(row) for row in sample_rows])
|
82 |
+
|
83 |
+
# in some dialects when there are no rows in the table a
|
84 |
+
# 'ProgrammingError' is returned
|
85 |
+
except ProgrammingError:
|
86 |
+
sample_rows_str = ""
|
87 |
+
|
88 |
+
return (
|
89 |
+
f"{row_count} rows from {table.name} table:\n"
|
90 |
+
f"{columns_str}\n"
|
91 |
+
f"{sample_rows_str}"
|
92 |
+
)
|
93 |
+
|
94 |
+
def get_unique_values(engine:Engine, table:Table) -> str:
|
95 |
+
"""Gets the unique values of each column in a table using the SQLAlchemy engine"""
|
96 |
+
unique_values = {}
|
97 |
+
for column in table.c:
|
98 |
+
command = select(distinct(column))
|
99 |
+
|
100 |
+
try:
|
101 |
+
# get the sample rows
|
102 |
+
with engine.connect() as connection:
|
103 |
+
result = connection.execute(command) # type: ignore
|
104 |
+
# shorten values in the sample rows
|
105 |
+
unique_values[column.name] = [str(u) for u in result]
|
106 |
+
|
107 |
+
# save the sample rows in string format
|
108 |
+
# sample_rows_str = "\n".join(["\t".join(row) for row in sample_rows])
|
109 |
+
# in some dialects when there are no rows in the table a
|
110 |
+
# 'ProgrammingError' is returned
|
111 |
+
except ProgrammingError:
|
112 |
+
sample_rows_str = ""
|
113 |
+
|
114 |
+
output_str = f"Unique values of each column in {table.name}: \n"
|
115 |
+
for column, values in unique_values.items():
|
116 |
+
output_str += f"{column} has {len(values)} unique values: {" ".join(values[:20])}"
|
117 |
+
if len(values) > 20:
|
118 |
+
output_str += ", ...."
|
119 |
+
output_str += "\n"
|
120 |
+
|
121 |
+
return output_str
|
122 |
+
|
123 |
+
def get_info_sqlalchemy(uri:str) -> dict[str, str] | None:
|
124 |
+
"""Gets the dialect name, accessible tables and table schemas using the SQLAlchemy engine"""
|
125 |
+
engine = create_engine(uri)
|
126 |
+
# Get dialect name using inspector
|
127 |
+
inspector = inspect(engine)
|
128 |
+
dialect = inspector.dialect.name
|
129 |
+
# Metadata for tables and columns
|
130 |
+
m = MetaData()
|
131 |
+
m.reflect(engine)
|
132 |
+
|
133 |
+
tables = {}
|
134 |
+
for table in m.tables.values():
|
135 |
+
tables[table.name] = str(CreateTable(table).compile(engine)).rstrip()
|
136 |
+
tables[table.name] += "\n\n/*"
|
137 |
+
tables[table.name] += "\n" + get_sample_rows(engine, table)+"\n"
|
138 |
+
tables[table.name] += "\n" + get_unique_values(engine, table)+"\n"
|
139 |
+
tables[table.name] += "*/"
|
140 |
+
|
141 |
+
return {'sql_dialect': dialect, 'tables': ", ".join(tables.keys()), 'tables_schema': "\n\n".join(tables.values())}
|
142 |
+
|
143 |
def extract_code_blocks(text):
|
144 |
pattern = r"```(?:\w+)?\n(.*?)\n```"
|
145 |
matches = re.findall(pattern, text, re.DOTALL)
|
146 |
return matches
|
147 |
|
148 |
if __name__ == "__main__":
|
149 |
+
from dotenv import load_dotenv
|
150 |
+
import os
|
151 |
+
load_dotenv()
|
152 |
+
|
153 |
+
uri = os.getenv("POSTGRES_URI")
|
154 |
+
print(get_info_sqlalchemy(uri))
|
var.py
CHANGED
@@ -30,7 +30,7 @@ correctness, efficiency, and security in your SQL queries.\
|
|
30 |
4. **Context Awareness**: Understand the intent behind the query and generate the most relevant SQL statement.
|
31 |
5. **Formatting**: Return queries in a clean, well-structured format with appropriate indentation.
|
32 |
6. **Commenting**: Include comments in complex queries to explain logic when needed.
|
33 |
-
7. **Result**: Don't return the result of the query,
|
34 |
8. **Optimal**: Try to generate query which is optimal and not brute force.
|
35 |
9. **Single query**: Generate a best single SQL query for the user input.'
|
36 |
10. **Comment**: Include comments in the query to explain the logic behind it.
|
|
|
30 |
4. **Context Awareness**: Understand the intent behind the query and generate the most relevant SQL statement.
|
31 |
5. **Formatting**: Return queries in a clean, well-structured format with appropriate indentation.
|
32 |
6. **Commenting**: Include comments in complex queries to explain logic when needed.
|
33 |
+
7. **Result**: Don't return the result of the query, return only the SQL query.
|
34 |
8. **Optimal**: Try to generate query which is optimal and not brute force.
|
35 |
9. **Single query**: Generate a best single SQL query for the user input.'
|
36 |
10. **Comment**: Include comments in the query to explain the logic behind it.
|