Invicto69's picture
Synced repo using 'sync_with_huggingface' Github Action
d3b64d7 verified
import pandas as pd
import streamlit as st
from streamlit.components import v1 as components
from indicators import SMC
from src.utils import fetch, run_strategy
def algorithmic_trading_dashboard():
@st.cache_data
def load_data():
# Load data
symbols = pd.read_csv('data/Ticker_List_NSE_India.csv')
limits = pd.read_csv('data/yahoo_limits.csv')
return symbols, limits
symbols, limits = load_data()
# Dropdown options
period_list = ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max']
st.markdown(
"""
# Algorithmic Trading Dashboard
## Run Strategy
"""
)
# Input fields on the main page
# Select stock
stock = st.selectbox("Select Company", symbols['NAME OF COMPANY'].unique(), index=None)
c1, c2 = st.columns(2)
with c1:
# Select interval
interval = st.selectbox("Select Interval", limits['interval'].tolist(), index=3)
with c2:
# Update period options based on interval
limit = limits[limits['interval'] == interval]['limit'].values[0]
idx = period_list.index(limit)
period_options = period_list[:idx + 1] + ['max']
period = st.selectbox("Select Period", period_options, index=3)
c1, c2 = st.columns(2)
with c1:
# Select strategy
strategy = st.selectbox("Select Strategy", ['Order Block', 'Order Block with EMA', 'Structure trading'], index=2)
with c2:
# Swing High/Low window size
swing_hl = st.number_input("Swing High/Low Window Size", min_value=1, value=10,
help = "Minimum window size for finding swing highs and lows.")
# EMA parameters if "Order Block with EMA" is selected
if strategy == "Order Block with EMA":
c1, c2, c3 = st.columns(3)
with c1:
ema1 = st.number_input("Fast EMA Length", min_value=1, value=9,
help = "Length of Fast moving Exponential Moving Average.")
with c2:
ema2 = st.number_input("Slow EMA Length", min_value=1, value=21,
help = "Length of Slow moving Exponential Moving Average.")
with c3:
close_on_crossover = st.checkbox("Close trade on EMA crossover", value=False)
else:
ema1, ema2, close_on_crossover = None, None, None
with st.expander("Advanced options"):
c1, c2 = st.columns(2)
with c1:
initial_cash = st.number_input("Initial Cash [₹]", min_value=10000, value=10000)
with c2:
commission = st.number_input("Commission [%]", value = 0, min_value=-10, max_value=10,
help="Commission is the commission ratio. E.g. if your broker's "
"commission is 1% of trade value, set commission to 1.")
# Button to run the analysis
if st.button("Run"):
# Fetch ticker data
ticker = symbols[symbols['NAME OF COMPANY'] == stock]['YahooEquiv'].values[0]
data = fetch(ticker, period, interval)
# Generate signal plot based on strategy
if strategy == "Order Block" or strategy == "Order Block with EMA":
signal_plot = (
SMC(data=data, swing_hl_window_sz=swing_hl)
.plot(order_blocks=True, swing_hl=True, show=False)
.update_layout(title=dict(text=ticker))
)
else:
signal_plot = (
SMC(data=data, swing_hl_window_sz=swing_hl)
.plot(swing_hl_v2=True, structure=True, show=False)
.update_layout(title=dict(text=ticker))
)
backtest_results = run_strategy(ticker, strategy, period, interval,
swing_hl=swing_hl, ema1=ema1, ema2=ema2, close_on_crossover=close_on_crossover,
cash=initial_cash, commission=commission/100)
color = "green" if backtest_results['Return [%]'].values[0] > 0 else "red"
# Display plots
st.write(f"### :{color}[Signal Plot]")
st.plotly_chart(signal_plot, width=1200)
st.write(f'### :{color}[Backtest Results]')
cols = ['Stock', 'Sector', 'Start', 'End', 'Return [%]', 'Equity Final [₹]', 'Buy & Hold Return [%]', '# Trades',
'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]']
st.dataframe(backtest_results, hide_index=True, column_order=cols)
st.write(f"### :{color}[Backtest Plot]")
plot = backtest_results['plot']
components.html(plot[0], height=1067)
algorithmic_trading_dashboard()