Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import gradio as gr
|
4 |
+
from typing import List, Dict
|
5 |
+
from langchain.document_loaders import AirtableLoader
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.embeddings import OpenAIEmbeddings
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain.chat_models import ChatOpenAI
|
10 |
+
from langchain.schema import SystemMessage, HumanMessage
|
11 |
+
from langchain.text_splitter import CharacterTextSplitter
|
12 |
+
from langchain.docstore.document import Document
|
13 |
+
|
14 |
+
# Set up API keys
|
15 |
+
os.environ["AIRTABLE_API_KEY"] = os.getenv["AIRTABLE_API_KEY"]
|
16 |
+
os.environ["OPENAI_API_KEY"] = os.getenv["OPENAI_API_KEY"]
|
17 |
+
|
18 |
+
base_id = os.getenv["base_id"]
|
19 |
+
table_id = os.getenv["table_id"]
|
20 |
+
view = os.getenv["view"]
|
21 |
+
|
22 |
+
def load_airtable_data() -> List[Dict]:
|
23 |
+
"""Load data from Airtable and return as a list of dictionaries."""
|
24 |
+
loader = AirtableLoader(os.environ["AIRTABLE_API_KEY"], table_id, base_id, view=view)
|
25 |
+
documents = loader.load()
|
26 |
+
data = []
|
27 |
+
for doc in documents:
|
28 |
+
try:
|
29 |
+
# Try to parse the JSON content
|
30 |
+
record = json.loads(doc.page_content)
|
31 |
+
data.append(record)
|
32 |
+
except json.JSONDecodeError:
|
33 |
+
# If JSON parsing fails, use the raw content
|
34 |
+
print(f"Warning: Could not parse JSON for document: {doc.page_content[:100]}...")
|
35 |
+
data.append({"raw_content": doc.page_content})
|
36 |
+
return data
|
37 |
+
|
38 |
+
# Load Airtable data
|
39 |
+
try:
|
40 |
+
airtable_data = load_airtable_data()
|
41 |
+
print(f"Successfully loaded {len(airtable_data)} records from Airtable.")
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error loading Airtable data: {str(e)}")
|
44 |
+
airtable_data = []
|
45 |
+
|
46 |
+
# Prepare documents for embedding
|
47 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
48 |
+
documents = [Document(page_content=json.dumps(record)) for record in airtable_data]
|
49 |
+
split_documents = text_splitter.split_documents(documents)
|
50 |
+
|
51 |
+
# Initialize the embedding model and FAISS index
|
52 |
+
embedding_model = OpenAIEmbeddings()
|
53 |
+
vectorstore = FAISS.from_documents(split_documents, embedding_model)
|
54 |
+
|
55 |
+
# Define the retrieval model
|
56 |
+
retriever = vectorstore.as_retriever()
|
57 |
+
|
58 |
+
# Define the chat model
|
59 |
+
chat_model = ChatOpenAI(model="gpt-4o")
|
60 |
+
|
61 |
+
# Define a custom prompt for context
|
62 |
+
system_message_content = """
|
63 |
+
You are a school assistant with strong database Q&A capabilities.
|
64 |
+
Your role is to help educators keep track of students' assignments in different classes.
|
65 |
+
This is a complex problem, because each student has their own menu of classes (they choose their classes), so that it can be hard for a teacher to know what assignments their students might have
|
66 |
+
in other classes. Solving this requires carefully analyzing a database.
|
67 |
+
You have acces to a database with the following format:
|
68 |
+
-List of classes
|
69 |
+
-List of DUE dates, when students turn in work done at home
|
70 |
+
-List of DO dates, when students take assessments in class
|
71 |
+
-List of DUE assignments
|
72 |
+
-List of DO assessments
|
73 |
+
The policy is that students cannot have to DO more than 2 in-class assignments on a given day.
|
74 |
+
HOWEVER, they might have 2 or more assignments DUE on the same day.
|
75 |
+
Be concise and factual in your answers unless asked for more details.
|
76 |
+
Base all of your answers on the data provided.
|
77 |
+
Double-check your answers, and if you don't know the answer, say that you don't know.
|
78 |
+
"""
|
79 |
+
|
80 |
+
# Create the QA chain
|
81 |
+
qa_chain = RetrievalQA.from_chain_type(
|
82 |
+
llm=chat_model,
|
83 |
+
chain_type="stuff",
|
84 |
+
retriever=retriever,
|
85 |
+
return_source_documents=True
|
86 |
+
)
|
87 |
+
|
88 |
+
def ask_question(question: str) -> str:
|
89 |
+
"""Ask a question about the Airtable data."""
|
90 |
+
# Combine the system message and user question
|
91 |
+
full_query = f"{system_message_content}\n\nHuman: {question}\n\nAssistant:"
|
92 |
+
|
93 |
+
# Get the response from the QA chain
|
94 |
+
response = qa_chain({"query": full_query})
|
95 |
+
|
96 |
+
# Return the response content
|
97 |
+
return response['result']
|
98 |
+
|
99 |
+
# Define the Gradio interface
|
100 |
+
def gradio_interface(question: str) -> str:
|
101 |
+
return ask_question(question)
|
102 |
+
|
103 |
+
# Set up Gradio interface
|
104 |
+
iface = gr.Interface(
|
105 |
+
fn=gradio_interface,
|
106 |
+
inputs="text",
|
107 |
+
outputs="text",
|
108 |
+
title="Summative Assessment Tracker",
|
109 |
+
description="I am here to help you schedule summative assessments for your students"
|
110 |
+
)
|
111 |
+
|
112 |
+
# Launch the Gradio app
|
113 |
+
iface.launch(debug=True)
|