import streamlit as st st.set_page_config(layout="wide") import yfinance as yf # import alpaca as tradeapi import alpaca_trade_api as alpaca from newsapi import NewsApiClient from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer from datetime import datetime, timedelta import streamlit as st import pandas as pd import matplotlib.pyplot as plt import logging import threading import time import json import os import plotly.graph_objs as go from sklearn.preprocessing import minmax_scale from plotly.subplots import make_subplots # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) AUTO_TRADE_LOG_PATH = "auto_trade_log.json" # Path to store auto trade log # The trading history events are saved in the file "auto_trade_log.json" # This file is created and updated in the current working directory where you run your Streamlit app. AUTO_TRADE_INTERVAL = 10800 # Interval in seconds (e.g., 10800 seconds = 3 hours) class AlpacaTrader: def __init__(self, API_KEY, API_SECRET, BASE_URL): self.alpaca = alpaca.REST(API_KEY, API_SECRET, BASE_URL) self.cash = 0 self.holdings = {} self.trades = [] def get_market_status(self): return self.alpaca.get_clock().is_open def buy(self, symbol, qty): try: # Ensure at least $1000 in cash before buying account = self.alpaca.get_account() cash_balance = float(account.cash) if cash_balance < 1000: logger.warning(f"Low cash: (${cash_balance}) to buy {symbol}. Minimum $1000 required.") return None order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='buy', type='market', time_in_force='day') logger.info(f"Bought {qty} shares of {symbol}") return order except Exception as e: logger.error(f"Error buying {symbol}: {e}") return None def sell(self, symbol, qty): # Check if position exists and has enough quantity before attempting to sell positions = {p.symbol: float(p.qty) for p in self.alpaca.list_positions()} if symbol not in positions: logger.warning(f"No position in {symbol}. Sell not attempted.") return None if positions[symbol] < qty: logger.warning(f"Not enough shares to sell: {qty} requested, {positions[symbol]} available for {symbol}. Sell not attempted.") return None try: order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='sell', type='market', time_in_force='day') logger.info(f"Sold {qty} shares of {symbol}") return order except Exception as e: logger.error(f"Error selling {symbol}: {e}") return None def getHoldings(self): positions = self.alpaca.list_positions() for position in positions: self.holdings[position.symbol] = position.market_value return self.holdings def getCash(self): return self.alpaca.get_account().cash def update_portfolio(self, symbol, price, qty, action): if action == 'buy': self.cash -= price * qty if symbol in self.holdings: self.holdings[symbol] += price * qty else: self.holdings[symbol] = price * qty elif action == 'sell': self.cash += price * qty self.holdings[symbol] -= price * qty if self.holdings[symbol] <= 0: del self.holdings[symbol] self.trades.append({'symbol': symbol, 'price': price, 'qty': qty, 'action': action, 'time': datetime.now()}) class NewsSentiment: def __init__(self, API_KEY): ''' Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. ''' self.newsapi = NewsApiClient(api_key=API_KEY) self.sia = SentimentIntensityAnalyzer() def get_news_sentiment(self, symbols): ''' ERROR:__main__:Error getting news for APLD: {'status': 'error', 'code': 'rateLimited', 'message': 'You have made too many requests recently. Developer accounts are limited to 100 requests over a 24 hour period (50 requests available every 12 hours). Please upgrade to a paid plan if you need more requests.'} ''' sentiment = {} for symbol in symbols: try: articles = self.newsapi.get_everything(q=symbol, language='en', sort_by='publishedAt', # <-- fixed argument name page=1) compound_score = 0 for article in articles['articles'][:5]: # Check first 5 articles # print(f'article= {article}') score = self.sia.polarity_scores(article['title'])['compound'] compound_score += score avg_score = compound_score / 5 if articles['articles'] else 0 if avg_score > 0.1: sentiment[symbol] = 'Positive' elif avg_score < -0.1: sentiment[symbol] = 'Negative' else: sentiment[symbol] = 'Neutral' except Exception as e: logger.error(f"Error getting news for {symbol}: {e}") sentiment[symbol] = 'Neutral' return sentiment class StockAnalyzer: def __init__(self, alpaca): self.alpaca = alpaca self.symbols = self.get_top_volume_stocks() # Build a symbol->name mapping for use in plots/tables self.symbol_to_name = self.get_symbol_to_name() def get_symbol_to_name(self): # Get mapping from symbol to company name using Alpaca asset info assets = self.alpaca.alpaca.list_assets(status='active') return {asset.symbol: asset.name for asset in assets} def get_bars(self, alp_api, symbols, timeframe='1D'): bars_data = {} try: bars = alp_api.get_bars(list(symbols), timeframe).df for symbol in symbols: symbol_bars = bars[bars['symbol'] == symbol] if not symbol_bars.empty: bar_info = symbol_bars.iloc[-1] # Handle index type for timestamp if isinstance(bar_info.name, tuple): timestamp = bar_info.name[1].isoformat() else: timestamp = bar_info.name.isoformat() bars_data[symbol] = { 'bar_data': { 'volume': bar_info['volume'], 'open': bar_info['open'], 'high': bar_info['high'], 'low': bar_info['low'], 'close': bar_info['close'], 'timestamp': timestamp } } else: logger.warning(f"No bar data for symbol: {symbol}") bars_data[symbol] = {'bar_data': None} except Exception as e: logger.warning(f"Error fetching bars in batch: {e}") for symbol in symbols: bars_data[symbol] = {'bar_data': None} return bars_data def assetswithconditions(self,stock_assets): cond = { 'class': ['us_equity'], 'exchange': ['NASDAQ', 'NYSE'], 'status': ['active'], 'tradable': [True], 'marginable': [True], 'shortable': [True], 'easy_to_borrow': [True], 'fractionable': [True] } assets_with_conditions = [] asset_symbol_dict = {} for asset in stock_assets: # Skip symbols with '.' or '/' (preferred shares, warrants, etc.) if '.' in asset.symbol or '/' in asset.symbol: continue if (asset.__getattr__('class') in cond['class'] and asset.exchange in cond['exchange'] and asset.status in cond['status'] and asset.tradable in cond['tradable'] and asset.marginable in cond['marginable'] and asset.shortable in cond['shortable'] and asset.easy_to_borrow in cond['easy_to_borrow'] and asset.fractionable in cond['fractionable'] ): assets_with_conditions.append(asset) asset_no_comma = asset.name.replace(',', '') asset_first_word = asset_no_comma.split()[0] asset_symbol_dict[asset.symbol] = asset._raw asset_symbol_dict[asset.symbol]['firstWord'] = asset_first_word sorted_dict = dict(sorted(asset_symbol_dict.items())) # print(f'Length of Alpaca assets with conditions = {len(assets_with_conditions)}') # print(f'assets_with_conditions = {assets_with_conditions}') return assets_with_conditions, sorted_dict def get_top_volume_stocks(self,num_stocks=10): try: # Get all tradable assets assets = self.alpaca.alpaca.list_assets(status='active') # tradable_assets = {asset.symbol: {} for asset in assets if asset.tradable} # print(f'tradable_assets = {tradable_assets}') assets_with_conditions, sorted_dict = self.assetswithconditions(assets) # print(f'sorted_dict = {sorted_dict}') # Fetch bar data for all tradable assets # print(f'sorted_dict.keys()={sorted_dict.keys()}') tradable_assets = self.get_bars(self.alpaca.alpaca, sorted_dict.keys(), timeframe='1D') # Extract volume and calculate the top 10 stocks by volume volume_data = { symbol: info['bar_data']['volume'] for symbol, info in tradable_assets.items() if info['bar_data'] is not None } top_volume_stocks = sorted(volume_data, key=volume_data.get, reverse=True)[:num_stocks] print(f'top_volume_stocks = {top_volume_stocks}') return top_volume_stocks except Exception as e: logger.error(f"Error fetching top volume stocks: {e}") return [] def get_historical_data(self, symbols): data = {} for symbol in symbols: try: # Pull historical data from 2000-01-01 to today, daily interval ticker = yf.Ticker(symbol) hist = ticker.history(start='2023-01-01', end=datetime.now().strftime('%Y-%m-%d'), interval='1d') data[symbol] = hist except Exception as e: logger.error(f"Error getting data for {symbol}: {e}") return data class TradingApp: def __init__(self): self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets') self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY']) self.analyzer = StockAnalyzer(self.alpaca) self.data = self.analyzer.get_historical_data(self.analyzer.symbols) self.auto_trade_log = [] # Store automatic trade actions def display_charts(self): # Dynamically adjust columns based on number of stocks and available width symbols = list(self.data.keys()) symbol_to_name = self.analyzer.symbol_to_name n = len(symbols) # Calculate columns based on n for best fit if n <= 3: cols = n elif n <= 6: cols = 3 elif n <= 8: cols = 4 elif n <= 12: cols = 4 else: cols = 5 rows = (n + cols - 1) // cols subplot_titles = [ f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols ] fig = make_subplots(rows=rows, cols=cols, subplot_titles=subplot_titles) for idx, symbol in enumerate(symbols): df = self.data[symbol] if not df.empty: row = idx // cols + 1 col = idx % cols + 1 fig.add_trace( go.Scatter( x=df.index, y=df['Close'], mode='lines', name=symbol, hovertemplate=f"%{{x}}
{symbol}: %{{y:.2f}}" ), row=row, col=col ) fig.update_layout( title="Top Volume Stocks - Price Charts (Since 2023)", height=max(400 * rows, 600), showlegend=False, dragmode=False, ) # Enable scroll-zoom for each subplot (individual zoom) fig.update_layout( xaxis=dict(fixedrange=False), yaxis=dict(fixedrange=False), ) for i in range(1, rows * cols + 1): fig.layout[f'xaxis{i}'].update(fixedrange=False) fig.layout[f'yaxis{i}'].update(fixedrange=False) st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True}) def manual_trade(self): # Move all user inputs to the sidebar with st.sidebar: st.header("Manual Trade") symbol = st.text_input('Enter stock symbol') qty = int(st.number_input('Enter quantity')) action = st.selectbox('Action', ['Buy', 'Sell']) if st.button('Execute'): if action == 'Buy': order = self.alpaca.buy(symbol, qty) else: order = self.alpaca.sell(symbol, qty) if order: st.success(f"Order executed: {action} {qty} shares of {symbol}") else: st.error("Order failed") st.header("Portfolio") st.write("Cash Balance:") st.write(self.alpaca.getCash()) st.write("Holdings:") st.write(self.alpaca.getHoldings()) st.write("Recent Trades:") st.write(pd.DataFrame(self.alpaca.trades)) def auto_trade_based_on_sentiment(self, sentiment): # Add company name to each action actions = [] symbol_to_name = self.analyzer.symbol_to_name for symbol, sentiment_value in sentiment.items(): action = None if sentiment_value == 'Positive': order = self.alpaca.buy(symbol, 1) action = 'Buy' elif sentiment_value == 'Negative': order = self.alpaca.sell(symbol, 1) action = 'Sell' else: order = None action = 'Hold' actions.append({ 'symbol': symbol, 'company_name': symbol_to_name.get(symbol, ''), 'sentiment': sentiment_value, 'action': action }) self.auto_trade_log = actions return actions def background_auto_trade(app): # This function runs in a background thread and does not require a TTY. # The warning "tcgetpgrp failed: Not a tty" is harmless and can be ignored. # It is likely caused by the environment in which the script is running (e.g., Streamlit, Docker, or a notebook). # No code changes are needed for this warning. while True: sentiment = app.sentiment.get_news_sentiment(app.analyzer.symbols) actions = [] for symbol, sentiment_value in sentiment.items(): action = None if sentiment_value == 'Positive': order = app.alpaca.buy(symbol, 1) action = 'Buy' elif sentiment_value == 'Negative': order = app.alpaca.sell(symbol, 1) action = 'Sell' else: order = None action = 'Hold' actions.append({ 'symbol': symbol, 'sentiment': sentiment_value, 'action': action }) # Append to log file instead of overwriting log_entry = { "timestamp": datetime.now().isoformat(), "actions": actions, "sentiment": sentiment } try: if os.path.exists(AUTO_TRADE_LOG_PATH): with open(AUTO_TRADE_LOG_PATH, "r") as f: log_data = json.load(f) else: log_data = [] except Exception: log_data = [] log_data.append(log_entry) with open(AUTO_TRADE_LOG_PATH, "w") as f: json.dump(log_data, f) time.sleep(AUTO_TRADE_INTERVAL) def load_auto_trade_log(): try: with open(AUTO_TRADE_LOG_PATH, "r") as f: return json.load(f) except Exception: return None class TradingApp: def __init__(self): self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets') self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY']) self.analyzer = StockAnalyzer(self.alpaca) self.data = self.analyzer.get_historical_data(self.analyzer.symbols) self.auto_trade_log = [] # Store automatic trade actions def display_charts(self): # Dynamically adjust columns based on number of stocks and available width symbols = list(self.data.keys()) symbol_to_name = self.analyzer.symbol_to_name n = len(symbols) # Calculate columns based on n for best fit if n <= 3: cols = n elif n <= 6: cols = 3 elif n <= 8: cols = 4 elif n <= 12: cols = 4 else: cols = 5 rows = (n + cols - 1) // cols subplot_titles = [ f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols ] fig = make_subplots(rows=rows, cols=cols, subplot_titles=subplot_titles) for idx, symbol in enumerate(symbols): df = self.data[symbol] if not df.empty: row = idx // cols + 1 col = idx % cols + 1 fig.add_trace( go.Scatter( x=df.index, y=df['Close'], mode='lines', name=symbol, hovertemplate=f"%{{x}}
{symbol}: %{{y:.2f}}" ), row=row, col=col ) fig.update_layout( title="Top Volume Stocks - Price Charts (Since 2023)", height=max(400 * rows, 600), showlegend=False, dragmode=False, ) # Enable scroll-zoom for each subplot (individual zoom) fig.update_layout( xaxis=dict(fixedrange=False), yaxis=dict(fixedrange=False), ) for i in range(1, rows * cols + 1): fig.layout[f'xaxis{i}'].update(fixedrange=False) fig.layout[f'yaxis{i}'].update(fixedrange=False) st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True}) def manual_trade(self): # Move all user inputs to the sidebar with st.sidebar: st.header("Manual Trade") symbol = st.text_input('Enter stock symbol') qty = int(st.number_input('Enter quantity')) action = st.selectbox('Action', ['Buy', 'Sell']) if st.button('Execute'): if action == 'Buy': order = self.alpaca.buy(symbol, qty) else: order = self.alpaca.sell(symbol, qty) if order: st.success(f"Order executed: {action} {qty} shares of {symbol}") else: st.error("Order failed") st.header("Portfolio") st.write("Cash Balance:") st.write(self.alpaca.getCash()) st.write("Holdings:") st.write(self.alpaca.getHoldings()) st.write("Recent Trades:") st.write(pd.DataFrame(self.alpaca.trades)) def auto_trade_based_on_sentiment(self, sentiment): # Add company name to each action actions = [] symbol_to_name = self.analyzer.symbol_to_name for symbol, sentiment_value in sentiment.items(): action = None if sentiment_value == 'Positive': order = self.alpaca.buy(symbol, 1) action = 'Buy' elif sentiment_value == 'Negative': order = self.alpaca.sell(symbol, 1) action = 'Sell' else: order = None action = 'Hold' actions.append({ 'symbol': symbol, 'company_name': symbol_to_name.get(symbol, ''), 'sentiment': sentiment_value, 'action': action }) self.auto_trade_log = actions return actions def background_auto_trade(app): # This function runs in a background thread and does not require a TTY. # The warning "tcgetpgrp failed: Not a tty" is harmless and can be ignored. # It is likely caused by the environment in which the script is running (e.g., Streamlit, Docker, or a notebook). # No code changes are needed for this warning. while True: sentiment = app.sentiment.get_news_sentiment(app.analyzer.symbols) actions = [] for symbol, sentiment_value in sentiment.items(): action = None if sentiment_value == 'Positive': order = app.alpaca.buy(symbol, 1) action = 'Buy' elif sentiment_value == 'Negative': order = app.alpaca.sell(symbol, 1) action = 'Sell' else: order = None action = 'Hold' actions.append({ 'symbol': symbol, 'sentiment': sentiment_value, 'action': action }) # Append to log file instead of overwriting log_entry = { "timestamp": datetime.now().isoformat(), "actions": actions, "sentiment": sentiment } try: if os.path.exists(AUTO_TRADE_LOG_PATH): with open(AUTO_TRADE_LOG_PATH, "r") as f: log_data = json.load(f) else: log_data = [] except Exception: log_data = [] log_data.append(log_entry) with open(AUTO_TRADE_LOG_PATH, "w") as f: json.dump(log_data, f) time.sleep(AUTO_TRADE_INTERVAL) def load_auto_trade_log(): try: with open(AUTO_TRADE_LOG_PATH, "r") as f: return json.load(f) except Exception: return None class TradingApp: def __init__(self): self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets') self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY']) self.analyzer = StockAnalyzer(self.alpaca) self.data = self.analyzer.get_historical_data(self.analyzer.symbols) self.auto_trade_log = [] # Store automatic trade actions def display_charts(self): # Dynamically adjust columns based on number of stocks and available width symbols = list(self.data.keys()) symbol_to_name = self.analyzer.symbol_to_name n = len(symbols) # Calculate columns based on n for best fit if n <= 3: cols = n elif n <= 6: cols = 3 elif n <= 8: cols = 4 elif n <= 12: cols = 4 else: cols = 5 rows = (n + cols - 1) // cols subplot_titles = [ f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols ] fig = make_subplots(rows=rows, cols=cols, subplot_titles=subplot_titles) for idx, symbol in enumerate(symbols): df = self.data[symbol] if not df.empty: row = idx // cols + 1 col = idx % cols + 1 fig.add_trace( go.Scatter( x=df.index, y=df['Close'], mode='lines', name=symbol, hovertemplate=f"%{{x}}
{symbol}: %{{y:.2f}}" ), row=row, col=col ) fig.update_layout( title="Top Volume Stocks - Price Charts (Since 2023)", height=max(400 * rows, 600), showlegend=False, dragmode=False, ) # Enable scroll-zoom for each subplot (individual zoom) fig.update_layout( xaxis=dict(fixedrange=False), yaxis=dict(fixedrange=False), ) for i in range(1, rows * cols + 1): fig.layout[f'xaxis{i}'].update(fixedrange=False) fig.layout[f'yaxis{i}'].update(fixedrange=False) st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True}) def manual_trade(self): # Move all user inputs to the sidebar with st.sidebar: st.header("Manual Trade") symbol = st.text_input('Enter stock symbol') qty = int(st.number_input('Enter quantity')) action = st.selectbox('Action', ['Buy', 'Sell']) if st.button('Execute'): if action == 'Buy': order = self.alpaca.buy(symbol, qty) else: order = self.alpaca.sell(symbol, qty) if order: st.success(f"Order executed: {action} {qty} shares of {symbol}") else: st.error("Order failed") st.header("Portfolio") st.write("Cash Balance:") st.write(self.alpaca.getCash()) st.write("Holdings:") st.write(self.alpaca.getHoldings()) st.write("Recent Trades:") st.write(pd.DataFrame(self.alpaca.trades)) def auto_trade_based_on_sentiment(self, sentiment): # Add company name to each action actions = [] symbol_to_name = self.analyzer.symbol_to_name for symbol, sentiment_value in sentiment.items(): action = None if sentiment_value == 'Positive': order = self.alpaca.buy(symbol, 1) action = 'Buy' elif sentiment_value == 'Negative': order = self.alpaca.sell(symbol, 1) action = 'Sell' else: order = None action = 'Hold' actions.append({ 'symbol': symbol, 'company_name': symbol_to_name.get(symbol, ''), 'sentiment': sentiment_value, 'action': action }) self.auto_trade_log = actions return actions def background_auto_trade(app): # This function runs in a background thread and does not require a TTY. # The warning "tcgetpgrp failed: Not a tty" is harmless and can be ignored. # It is likely caused by the environment in which the script is running (e.g., Streamlit, Docker, or a notebook). # No code changes are needed for this warning. while True: sentiment = app.sentiment.get_news_sentiment(app.analyzer.symbols) actions = [] for symbol, sentiment_value in sentiment.items(): action = None if sentiment_value == 'Positive': order = app.alpaca.buy(symbol, 1) action = 'Buy' elif sentiment_value == 'Negative': order = app.alpaca.sell(symbol, 1) action = 'Sell' else: order = None action = 'Hold' actions.append({ 'symbol': symbol, 'sentiment': sentiment_value, 'action': action }) # Append to log file instead of overwriting log_entry = { "timestamp": datetime.now().isoformat(), "actions": actions, "sentiment": sentiment } try: if os.path.exists(AUTO_TRADE_LOG_PATH): with open(AUTO_TRADE_LOG_PATH, "r") as f: log_data = json.load(f) else: log_data = [] except Exception: log_data = [] log_data.append(log_entry) with open(AUTO_TRADE_LOG_PATH, "w") as f: json.dump(log_data, f) time.sleep(AUTO_TRADE_INTERVAL) def load_auto_trade_log(): try: with open(AUTO_TRADE_LOG_PATH, "r") as f: return json.load(f) except Exception: return None class TradingApp: def __init__(self): self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets') self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY']) self.analyzer = StockAnalyzer(self.alpaca) self.data = self.analyzer.get_historical_data(self.analyzer.symbols) self.auto_trade_log = [] # Store automatic trade actions def display_charts(self): # Dynamically adjust columns based on number of stocks and available width symbols = list(self.data.keys()) symbol_to_name = self.analyzer.symbol_to_name n = len(symbols) # Calculate columns based on n for best fit if n <= 3: cols = n elif n <= 6: cols = 3 elif n <= 8: cols = 4 elif n <= 12: cols = 4 else: cols = 5 rows = (n + cols - 1) // cols subplot_titles = [ f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols ] fig = make_subplots(rows=rows, cols=cols, subplot_titles=subplot_titles) for idx, symbol in enumerate(symbols): df = self.data[symbol] if not df.empty: row = idx // cols + 1 col = idx % cols + 1 fig.add_trace( go.Scatter( x=df.index, y=df['Close'], mode='lines', name=symbol, hovertemplate=f"%{{x}}
{symbol}: %{{y:.2f}}" ), row=row, col=col ) fig.update_layout( title="Top Volume Stocks - Price Charts (Since 2023)", height=max(400 * rows, 600), showlegend=False, dragmode=False, ) # Enable scroll-zoom for each subplot (individual zoom) fig.update_layout( xaxis=dict(fixedrange=False), yaxis=dict(fixedrange=False), ) for i in range(1, rows * cols + 1): fig.layout[f'xaxis{i}'].update(fixedrange=False) fig.layout[f'yaxis{i}'].update(fixedrange=False) st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True}) def manual_trade(self): # Move all user inputs to the sidebar with st.sidebar: st.header("Manual Trade") symbol = st.text_input('Enter stock symbol') qty = int(st.number_input('Enter quantity')) action = st.selectbox('Action', ['Buy', 'Sell']) if st.button('Execute'): if action == 'Buy': order = self.alpaca.buy(symbol, qty) else: order = self.alpaca.sell(symbol, qty) if order: st.success(f"Order executed: {action} {qty} shares of {symbol}") else: st.error("Order failed") st.header("Portfolio") st.write("Cash Balance:") st.write(self.alpaca.getCash()) st.write("Holdings:") st.write(self.alpaca.getHoldings()) st.write("Recent Trades:") st.write(pd.DataFrame(self.alpaca.trades)) def auto_trade_based_on_sentiment(self, sentiment): # Add company name to each action actions = [] symbol_to_name = self.analyzer.symbol_to_name for symbol, sentiment_value in sentiment.items(): action = None if sentiment_value == 'Positive': order = self.alpaca.buy(symbol, 1) action = 'Buy' elif sentiment_value == 'Negative': order = self.alpaca.sell(symbol, 1) action = 'Sell' else: order = None action = 'Hold' actions.append({ 'symbol': symbol, 'company_name': symbol_to_name.get(symbol, ''), 'sentiment': sentiment_value, 'action': action }) self.auto_trade_log = actions return actions def background_auto_trade(app): # This function runs in a background thread and does not require a TTY. # The warning "tcgetpgrp failed: Not a tty" is harmless and can be ignored. # It is likely caused by the environment in which the script is running (e.g., Streamlit, Docker, or a notebook). # No code changes are needed for this warning. while True: sentiment = app.sentiment.get_news_sentiment(app.analyzer.symbols) actions = [] for symbol, sentiment_value in sentiment.items(): action = None if sentiment_value == 'Positive': order = app.alpaca.buy(symbol, 1) action = 'Buy' elif sentiment_value == 'Negative': order = app.alpaca.sell(symbol, 1) action = 'Sell' else: order = None action = 'Hold' actions.append({ 'symbol': symbol, 'sentiment': sentiment_value, 'action': action }) # Append to log file instead of overwriting log_entry = { "timestamp": datetime.now().isoformat(), "actions": actions, "sentiment": sentiment } try: if os.path.exists(AUTO_TRADE_LOG_PATH): with open(AUTO_TRADE_LOG_PATH, "r") as f: log_data = json.load(f) else: log_data = [] except Exception: log_data = [] log_data.append(log_entry) with open(AUTO_TRADE_LOG_PATH, "w") as f: json.dump(log_data, f) time.sleep(AUTO_TRADE_INTERVAL) def load_auto_trade_log(): try: with open(AUTO_TRADE_LOG_PATH, "r") as f: return json.load(f) except Exception: return None def get_market_times(alpaca_api): try: clock = alpaca_api.get_clock() is_open = clock.is_open now = pd.Timestamp(clock.timestamp).tz_convert('America/New_York') next_close = pd.Timestamp(clock.next_close).tz_convert('America/New_York') next_open = pd.Timestamp(clock.next_open).tz_convert('America/New_York') return is_open, now, next_open, next_close except Exception as e: logger.error(f"Error fetching market times: {e}") return None, None, None, None def main(): st.title("Stock Trading Application") if not st.secrets['ALPACA_API_KEY'] or not st.secrets['NEWS_API_KEY']: st.error("Please configure your API keys in secrets.toml") return # Prevent Streamlit from rerunning the script on every widget interaction # Use session state to persist objects and only update when necessary if "app_instance" not in st.session_state: st.session_state["app_instance"] = TradingApp() app = st.session_state["app_instance"] # Only start the background thread once if "auto_trade_thread_started" not in st.session_state: thread = threading.Thread(target=background_auto_trade, args=(app,), daemon=True) thread.start() st.session_state["auto_trade_thread_started"] = True # Dynamic market clock is_open, now, next_open, next_close = get_market_times(app.alpaca.alpaca) market_status = "🟢 Market is OPEN" if is_open else "🔴 Market is CLOSED" st.markdown(f"### {market_status}") if now is not None: st.markdown(f"**Current time (ET):** {now.strftime('%Y-%m-%d %H:%M:%S')}") if is_open and next_close is not None: st.markdown(f"**Market closes at:** {next_close.strftime('%Y-%m-%d %H:%M:%S')} ET") # Show countdown to close seconds_left = int((next_close - now).total_seconds()) st.markdown(f"**Time until close:** {pd.to_timedelta(seconds_left, unit='s')}") elif not is_open and next_open is not None: st.markdown(f"**Market opens at:** {next_open.strftime('%Y-%m-%d %H:%M:%S')} ET") # Show countdown to open seconds_left = int((next_open - now).total_seconds()) st.markdown(f"**Time until open:** {pd.to_timedelta(seconds_left, unit='s')}") # Add auto-refresh for the clock every 5 seconds st.experimental_rerun() time.sleep(5) # User inputs and portfolio are now in the sidebar app.manual_trade() # Main area: plots and data app.display_charts() # Read and display latest auto-trade actions st.write("Automatic Trading Actions Based on Sentiment (background):") auto_trade_log = load_auto_trade_log() if auto_trade_log: # Show the most recent entry last_entry = auto_trade_log[-1] st.write(f"Last checked: {last_entry['timestamp']}") df = pd.DataFrame(last_entry["actions"]) # Reorder columns for clarity if "company_name" in df.columns: df = df[["symbol", "company_name", "sentiment", "action"]] st.dataframe(df) st.write("Sentiment Analysis (latest):") st.write(last_entry["sentiment"]) # Plot buy/sell actions over time (aggregate for all symbols) st.write("Auto-Trading History (Buy/Sell Actions Over Time):") history = [] for entry in auto_trade_log: ts = entry["timestamp"] for act in entry["actions"]: if act["action"] in ("Buy", "Sell"): history.append({ "timestamp": ts, "symbol": act["symbol"], "action": act["action"] }) if history: hist_df = pd.DataFrame(history) if not hist_df.empty: hist_df["timestamp"] = pd.to_datetime(hist_df["timestamp"]) # Pivot to get Buy/Sell counts per symbol over time # Avoid FutureWarning by explicitly converting to float after replace hist_df["action_value"] = hist_df["action"].replace({"Buy": 1, "Sell": -1}) hist_df["action_value"] = hist_df["action_value"].astype(float) pivot = hist_df.pivot_table(index="timestamp", columns="symbol", values="action_value", aggfunc="sum") st.line_chart(pivot.fillna(0)) else: st.info("Waiting for first background auto-trade run...") # Explanation: # In Alpaca: # - 'cash' is the actual cash available in your account (uninvested funds). # - 'buying_power' is the total amount you can use to buy securities, which may be higher than cash if you have margin enabled. # For a cash account, buying_power == cash. # For a margin account, buying_power can be up to 2x (or 4x for day trading) your cash, depending on regulations and your account status. # Example usage: # account = alpaca.get_account() # cash_balance = account.cash # buying_power = account.buying_power # Note: # To disable margin on your Alpaca paper account, you must set your account type to "cash" instead of "margin". # This cannot be changed via the API or code. You must: # 1. Log in to your Alpaca dashboard at https://app.alpaca.markets/ # 2. Go to "Paper Trading" > "Settings" # 3. Set the account type to "Cash" (not "Margin") # 4. If you do not see this option, you may need to reset your paper account or contact Alpaca support. # There is no programmatic/API way to change the margin setting for a paper account. if __name__ == "__main__": main()