Spaces:
Sleeping
Sleeping
Commit
·
de90557
1
Parent(s):
4e96b59
feat: add mistral
Browse files
app.py
CHANGED
@@ -1,8 +1,12 @@
|
|
1 |
-
import
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
6 |
|
7 |
import gradio as gr
|
8 |
|
@@ -13,8 +17,15 @@ import warnings
|
|
13 |
warnings.warn = warn
|
14 |
warnings.filterwarnings('ignore')
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def retriever_qa(file, query):
|
17 |
-
|
18 |
# retriever_obj = retriever(file)
|
19 |
# qa = RetrievalQA.from_chain_type(llm=llm,
|
20 |
# chain_type="stuff",
|
@@ -23,8 +34,22 @@ def retriever_qa(file, query):
|
|
23 |
# response = qa.invoke(query)
|
24 |
with open(file, 'r') as f:
|
25 |
first_line = f.readline()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
response =
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
return response
|
30 |
|
|
|
1 |
+
import spaces
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", device_map="auto")
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
6 |
+
|
7 |
+
# # Check if a GPU is available
|
8 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
# print(f"Using device: {device}")
|
10 |
|
11 |
import gradio as gr
|
12 |
|
|
|
17 |
warnings.warn = warn
|
18 |
warnings.filterwarnings('ignore')
|
19 |
|
20 |
+
def get_llm():
|
21 |
+
model_id = 'mistralai/Mistral-7B-Instruct-v0.2'
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto')
|
23 |
+
model.to('cuda')
|
24 |
+
return model
|
25 |
+
|
26 |
+
@spaces.GPU
|
27 |
def retriever_qa(file, query):
|
28 |
+
llm = get_llm()
|
29 |
# retriever_obj = retriever(file)
|
30 |
# qa = RetrievalQA.from_chain_type(llm=llm,
|
31 |
# chain_type="stuff",
|
|
|
34 |
# response = qa.invoke(query)
|
35 |
with open(file, 'r') as f:
|
36 |
first_line = f.readline()
|
37 |
+
|
38 |
+
messages = [
|
39 |
+
{"role": "user", "content": first_line}
|
40 |
+
]
|
41 |
+
|
42 |
+
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
43 |
+
|
44 |
+
generated_ids = llm.generate(model_inputs, max_new_tokens=100, do_sample=True)
|
45 |
+
# tokenizer.batch_decode(generated_ids)[0]
|
46 |
|
47 |
+
response = tokenizer.batch_decode(generated_ids)[0]
|
48 |
+
|
49 |
+
# # Check if a GPU is available
|
50 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
51 |
+
# print(f"Using device: {device}")
|
52 |
+
response = response + f". Using device: {device}"
|
53 |
|
54 |
return response
|
55 |
|