Spaces:
Sleeping
Sleeping
Commit
·
cd2e4d5
1
Parent(s):
c674325
feat: add auth
Browse files
app.py
CHANGED
@@ -1,14 +1,12 @@
|
|
|
|
1 |
import spaces
|
|
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
# # Check if a GPU is available
|
8 |
-
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
-
# print(f"Using device: {device}")
|
10 |
|
11 |
-
import gradio as gr
|
12 |
|
13 |
# You can use this section to suppress warnings generated by your code:
|
14 |
def warn(*args, **kwargs):
|
@@ -17,15 +15,16 @@ import warnings
|
|
17 |
warnings.warn = warn
|
18 |
warnings.filterwarnings('ignore')
|
19 |
|
20 |
-
def get_llm():
|
21 |
-
|
22 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto')
|
23 |
model.to('cuda')
|
24 |
return model
|
25 |
|
26 |
@spaces.GPU
|
27 |
def retriever_qa(file, query):
|
28 |
-
|
|
|
|
|
29 |
# retriever_obj = retriever(file)
|
30 |
# qa = RetrievalQA.from_chain_type(llm=llm,
|
31 |
# chain_type="stuff",
|
@@ -38,18 +37,12 @@ def retriever_qa(file, query):
|
|
38 |
messages = [
|
39 |
{"role": "user", "content": first_line}
|
40 |
]
|
41 |
-
|
42 |
-
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
43 |
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
44 |
-
|
45 |
-
generated_ids = llm.generate(model_inputs, max_new_tokens=100, do_sample=True)
|
46 |
-
# tokenizer.batch_decode(generated_ids)[0]
|
47 |
-
|
48 |
response = tokenizer.batch_decode(generated_ids)[0]
|
49 |
|
50 |
# # Check if a GPU is available
|
51 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
52 |
-
# print(f"Using device: {device}")
|
53 |
response = response + f". Using device: {device}"
|
54 |
|
55 |
return response
|
@@ -64,7 +57,7 @@ rag_application = gr.Interface(
|
|
64 |
],
|
65 |
outputs=gr.Textbox(label="Output"),
|
66 |
title="RAG Chatbot",
|
67 |
-
description="Upload a
|
68 |
)
|
69 |
|
70 |
rag_application.launch(share=True)
|
|
|
1 |
+
import os
|
2 |
import spaces
|
3 |
+
import gradio as gr
|
4 |
+
from huggingface_hub import login
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
|
7 |
+
api_token = os.environ.get("HF_API_TOKEN")
|
8 |
+
login(api_token)
|
|
|
|
|
|
|
|
|
9 |
|
|
|
10 |
|
11 |
# You can use this section to suppress warnings generated by your code:
|
12 |
def warn(*args, **kwargs):
|
|
|
15 |
warnings.warn = warn
|
16 |
warnings.filterwarnings('ignore')
|
17 |
|
18 |
+
def get_llm(model_id):
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
|
20 |
model.to('cuda')
|
21 |
return model
|
22 |
|
23 |
@spaces.GPU
|
24 |
def retriever_qa(file, query):
|
25 |
+
model_id = 'mistralai/Mistral-7B-Instruct-v0.2'
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
27 |
+
llm = get_llm(model_id)
|
28 |
# retriever_obj = retriever(file)
|
29 |
# qa = RetrievalQA.from_chain_type(llm=llm,
|
30 |
# chain_type="stuff",
|
|
|
37 |
messages = [
|
38 |
{"role": "user", "content": first_line}
|
39 |
]
|
|
|
|
|
40 |
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
41 |
+
generated_ids = llm.generate(model_inputs, max_new_tokens=512, do_sample=True)
|
|
|
|
|
|
|
42 |
response = tokenizer.batch_decode(generated_ids)[0]
|
43 |
|
44 |
# # Check if a GPU is available
|
45 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
46 |
response = response + f". Using device: {device}"
|
47 |
|
48 |
return response
|
|
|
57 |
],
|
58 |
outputs=gr.Textbox(label="Output"),
|
59 |
title="RAG Chatbot",
|
60 |
+
description="Upload a TXT document and ask any question. The chatbot will try to answer using the provided document."
|
61 |
)
|
62 |
|
63 |
rag_application.launch(share=True)
|