InkeyDevelopment commited on
Commit
90bf16b
·
verified ·
1 Parent(s): ae0d857

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -16
app.py CHANGED
@@ -1,4 +1,3 @@
1
- # app.py
2
 
3
  from flask import Flask, render_template, request, jsonify
4
  import faiss
@@ -8,6 +7,7 @@ from sentence_transformers import SentenceTransformer
8
  from langchain.prompts import PromptTemplate
9
  from langchain_groq import ChatGroq
10
  import re
 
11
  import os
12
  from dotenv import load_dotenv
13
  load_dotenv()
@@ -15,11 +15,23 @@ load_dotenv()
15
  app = Flask(__name__)
16
 
17
  # Load Model and FAISS Index
 
 
 
 
 
 
18
  model = SentenceTransformer('./sentence-transformers_all-MiniLM-L6-v2')
19
  index = faiss.read_index("faiss_index.bin")
20
  groq_api_key = os.getenv('GROQ_API_KEY')
21
  model_name = "llama-3.3-70b-versatile"
22
 
 
 
 
 
 
 
23
  llm = ChatGroq(
24
  temperature=0,
25
  groq_api_key=groq_api_key,
@@ -107,7 +119,9 @@ def search_text(query, top_k=2):
107
  def home():
108
  return render_template("index.html")
109
 
 
110
  @app.route("/query", methods=["POST"])
 
111
  def query_pdf():
112
  query = request.json.get("query")
113
 
@@ -134,8 +148,6 @@ def query_pdf():
134
  if query_type == "rude":
135
  return jsonify({"text": "I'm here to assist you professionally.", "images": []})
136
 
137
-
138
-
139
  # Search for relevant PDF content using FAISS
140
  results = search_text(query, top_k=3)
141
 
@@ -150,15 +162,16 @@ def query_pdf():
150
  """
151
  ### YOU ARE AN EXELSYS EASYHR GUIDE ASSISTANT:
152
  ### INSTRUCTIONS:
153
- - Your job is to provide step-by-step guidance for the following user query based on the provided context.
154
- - Base your response **only** on the retrieved context from the PDF.
155
- - If no relevant information is found, simply respond with: "Not found."
 
 
156
  - If the user greets you (e.g., "Hello", "Hi", "Good morning"), respond politely but keep it brief.
157
  - If the query is unrelated to Exelsys easyHR, respond with: "I'm here to assist with Exelsys easyHR queries only."
158
- - Provide clear and concise answers.
159
- - Provide all the links that inside any topic in <a> tag.
160
 
161
-
162
  ### USER QUERY:
163
  {query}
164
 
@@ -176,20 +189,23 @@ def query_pdf():
176
  # Convert response to string
177
  response_text = str(chat_response.content)
178
 
179
- # Determine if images should be included
180
- # retrieved_images = []
181
- # if "Not found." not in response_text and "I'm here to assist" not in response_text:
182
- # retrieved_images = [img for res in results if "images" in res for img in res["images"]]
 
 
183
 
184
  # Final response JSON
185
  response = {
186
- "text": response_text,
187
- # "images": retrieved_images
188
  }
189
  print(response)
190
 
191
  return jsonify(response)
192
 
 
193
  if __name__ == "__main__":
194
- app.run(host="0.0.0.0", port=7860)
195
 
 
 
1
 
2
  from flask import Flask, render_template, request, jsonify
3
  import faiss
 
7
  from langchain.prompts import PromptTemplate
8
  from langchain_groq import ChatGroq
9
  import re
10
+ from langchain_openai import AzureChatOpenAI
11
  import os
12
  from dotenv import load_dotenv
13
  load_dotenv()
 
15
  app = Flask(__name__)
16
 
17
  # Load Model and FAISS Index
18
+
19
+
20
+ # AzureOpenAiEndpoint= os.getenv("AZURE_OPENAI_ENDPOINT")
21
+ # AzureOpenAiKey= os.getenv("AZURE_OPENAI_KEY")
22
+ # OpenaiApiVersion= os.getenv("OPENAI_API_VERSION")
23
+ # DeploymentName= os.getenv("DEPLOYMENT_NAME")
24
  model = SentenceTransformer('./sentence-transformers_all-MiniLM-L6-v2')
25
  index = faiss.read_index("faiss_index.bin")
26
  groq_api_key = os.getenv('GROQ_API_KEY')
27
  model_name = "llama-3.3-70b-versatile"
28
 
29
+ # llm = AzureChatOpenAI(
30
+ # openai_api_version= OpenaiApiVersion, # Change based on your API version
31
+ # deployment_name = DeploymentName, # The model deployment name in Azure
32
+ # openai_api_key= AzureOpenAiKey, # Use the environment variable
33
+ # azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"], # Use the environment variable
34
+ # )
35
  llm = ChatGroq(
36
  temperature=0,
37
  groq_api_key=groq_api_key,
 
119
  def home():
120
  return render_template("index.html")
121
 
122
+ import re
123
  @app.route("/query", methods=["POST"])
124
+
125
  def query_pdf():
126
  query = request.json.get("query")
127
 
 
148
  if query_type == "rude":
149
  return jsonify({"text": "I'm here to assist you professionally.", "images": []})
150
 
 
 
151
  # Search for relevant PDF content using FAISS
152
  results = search_text(query, top_k=3)
153
 
 
162
  """
163
  ### YOU ARE AN EXELSYS EASYHR GUIDE ASSISTANT:
164
  ### INSTRUCTIONS:
165
+ - Identify the most relevant topic based on the user query.
166
+ - Provide step-by-step guidance for that topic only.
167
+ - Base your response **only** on the selected topic's content.
168
+ - Do not use content from other topics.
169
+ - If no relevant topic is found, respond with: "Not found."
170
  - If the user greets you (e.g., "Hello", "Hi", "Good morning"), respond politely but keep it brief.
171
  - If the query is unrelated to Exelsys easyHR, respond with: "I'm here to assist with Exelsys easyHR queries only."
172
+ - Format the response like this:
173
+ <p>Response text here...</p> \n <a>static/output_images/page_67_img_2.png</a>\n <a>static/output_images/page_45_img_1.jpg</a>
174
 
 
175
  ### USER QUERY:
176
  {query}
177
 
 
189
  # Convert response to string
190
  response_text = str(chat_response.content)
191
 
192
+ # Extract multiple image paths from response
193
+ image_pattern = r"static/output_images/[\w\d_]+\.png"
194
+ extracted_images = re.findall(image_pattern, response_text)
195
+
196
+ # Remove image paths from text
197
+ cleaned_text = re.sub(image_pattern, "", response_text).strip()
198
 
199
  # Final response JSON
200
  response = {
201
+ "text": cleaned_text,
202
+ "images": extracted_images # Store multiple images in a list
203
  }
204
  print(response)
205
 
206
  return jsonify(response)
207
 
208
+
209
  if __name__ == "__main__":
210
+ app.run(debug=True)
211