Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,78 +17,13 @@ import json
|
|
| 17 |
import os
|
| 18 |
load_dotenv()
|
| 19 |
|
| 20 |
-
def extract_text_images(pdf_path, output_dir="static/output_images"):
|
| 21 |
-
doc = fitz.open(pdf_path)
|
| 22 |
-
data = []
|
| 23 |
-
|
| 24 |
-
if not os.path.exists(output_dir):
|
| 25 |
-
os.makedirs(output_dir)
|
| 26 |
-
|
| 27 |
-
for page_num in range(len(doc)):
|
| 28 |
-
page = doc[page_num]
|
| 29 |
-
text = page.get_text("text")
|
| 30 |
-
|
| 31 |
-
images = page.get_images(full=True)
|
| 32 |
-
image_paths = []
|
| 33 |
-
|
| 34 |
-
for img_index, img in enumerate(images):
|
| 35 |
-
xref = img[0]
|
| 36 |
-
base_image = doc.extract_image(xref)
|
| 37 |
-
image_bytes = base_image["image"]
|
| 38 |
-
image_ext = base_image["ext"]
|
| 39 |
-
image_filename = f"{output_dir}/page_{page_num+1}_img_{img_index+1}.{image_ext}"
|
| 40 |
-
|
| 41 |
-
with open(image_filename, "wb") as img_file:
|
| 42 |
-
img_file.write(image_bytes)
|
| 43 |
-
|
| 44 |
-
image_paths.append(image_filename)
|
| 45 |
-
|
| 46 |
-
data.append({"page": page_num + 1, "text": text, "images": image_paths})
|
| 47 |
-
|
| 48 |
-
with open("pdf_data.json", "w") as f:
|
| 49 |
-
json.dump(data, f, indent=4)
|
| 50 |
-
|
| 51 |
-
return "Extraction completed!"
|
| 52 |
-
|
| 53 |
-
pdf_path = "./Exelsys easyHR v10 User Guide.pdf"
|
| 54 |
-
extract_text_images(pdf_path)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
# Load Hugging Face model
|
| 58 |
-
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 59 |
-
|
| 60 |
-
def get_embedding(text):
|
| 61 |
-
return model.encode(text, convert_to_numpy=True)
|
| 62 |
-
|
| 63 |
-
def store_embeddings():
|
| 64 |
-
with open("pdf_data.json") as f:
|
| 65 |
-
data = json.load(f)
|
| 66 |
-
|
| 67 |
-
dimension = 384
|
| 68 |
-
index = faiss.IndexFlatL2(dimension)
|
| 69 |
-
metadata = []
|
| 70 |
-
|
| 71 |
-
for i, entry in enumerate(data):
|
| 72 |
-
embedding = np.array(get_embedding(entry["text"])).astype("float32")
|
| 73 |
-
index.add(np.array([embedding]))
|
| 74 |
-
metadata.append({"page": entry["page"], "text": entry["text"], "images": entry["images"]})
|
| 75 |
-
|
| 76 |
-
faiss.write_index(index, "faiss_index.bin")
|
| 77 |
-
|
| 78 |
-
with open("metadata.json", "w") as f:
|
| 79 |
-
json.dump(metadata, f, indent=4)
|
| 80 |
-
|
| 81 |
-
return "Embeddings stored successfully!"
|
| 82 |
-
|
| 83 |
-
store_embeddings()
|
| 84 |
-
|
| 85 |
|
| 86 |
|
| 87 |
app = Flask(__name__)
|
| 88 |
|
| 89 |
# Load Model and FAISS Index
|
| 90 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 91 |
-
index = faiss.read_index("faiss_index.bin")
|
| 92 |
|
| 93 |
groq_api_key = os.getenv('GROQ_API_KEY')
|
| 94 |
model_name = "llama-3.3-70b-versatile"
|
|
@@ -99,7 +34,7 @@ llm = ChatGroq(
|
|
| 99 |
model_name=model_name
|
| 100 |
)
|
| 101 |
|
| 102 |
-
with open("metadata.json") as f:
|
| 103 |
metadata = json.load(f)
|
| 104 |
|
| 105 |
|
|
|
|
| 17 |
import os
|
| 18 |
load_dotenv()
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
app = Flask(__name__)
|
| 23 |
|
| 24 |
# Load Model and FAISS Index
|
| 25 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 26 |
+
index = faiss.read_index("./faiss_index.bin")
|
| 27 |
|
| 28 |
groq_api_key = os.getenv('GROQ_API_KEY')
|
| 29 |
model_name = "llama-3.3-70b-versatile"
|
|
|
|
| 34 |
model_name=model_name
|
| 35 |
)
|
| 36 |
|
| 37 |
+
with open("./metadata.json") as f:
|
| 38 |
metadata = json.load(f)
|
| 39 |
|
| 40 |
|