Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template, request, jsonify
|
2 |
+
import faiss
|
3 |
+
import numpy as np
|
4 |
+
import json
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
+
import re
|
9 |
+
import faiss
|
10 |
+
import numpy as np
|
11 |
+
import json
|
12 |
+
from sentence_transformers import SentenceTransformer
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
import fitz # PyMuPDF for text extraction
|
15 |
+
from pdf2image import convert_from_path
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
load_dotenv()
|
19 |
+
|
20 |
+
def extract_text_images(pdf_path, output_dir="static/output_images"):
|
21 |
+
doc = fitz.open(pdf_path)
|
22 |
+
data = []
|
23 |
+
|
24 |
+
if not os.path.exists(output_dir):
|
25 |
+
os.makedirs(output_dir)
|
26 |
+
|
27 |
+
for page_num in range(len(doc)):
|
28 |
+
page = doc[page_num]
|
29 |
+
text = page.get_text("text")
|
30 |
+
|
31 |
+
images = page.get_images(full=True)
|
32 |
+
image_paths = []
|
33 |
+
|
34 |
+
for img_index, img in enumerate(images):
|
35 |
+
xref = img[0]
|
36 |
+
base_image = doc.extract_image(xref)
|
37 |
+
image_bytes = base_image["image"]
|
38 |
+
image_ext = base_image["ext"]
|
39 |
+
image_filename = f"{output_dir}/page_{page_num+1}_img_{img_index+1}.{image_ext}"
|
40 |
+
|
41 |
+
with open(image_filename, "wb") as img_file:
|
42 |
+
img_file.write(image_bytes)
|
43 |
+
|
44 |
+
image_paths.append(image_filename)
|
45 |
+
|
46 |
+
data.append({"page": page_num + 1, "text": text, "images": image_paths})
|
47 |
+
|
48 |
+
with open("pdf_data.json", "w") as f:
|
49 |
+
json.dump(data, f, indent=4)
|
50 |
+
|
51 |
+
return "Extraction completed!"
|
52 |
+
|
53 |
+
pdf_path = "./Exelsys easyHR v10 User Guide.pdf"
|
54 |
+
extract_text_images(pdf_path)
|
55 |
+
|
56 |
+
|
57 |
+
# Load Hugging Face model
|
58 |
+
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
59 |
+
|
60 |
+
def get_embedding(text):
|
61 |
+
return model.encode(text, convert_to_numpy=True)
|
62 |
+
|
63 |
+
def store_embeddings():
|
64 |
+
with open("pdf_data.json") as f:
|
65 |
+
data = json.load(f)
|
66 |
+
|
67 |
+
dimension = 384
|
68 |
+
index = faiss.IndexFlatL2(dimension)
|
69 |
+
metadata = []
|
70 |
+
|
71 |
+
for i, entry in enumerate(data):
|
72 |
+
embedding = np.array(get_embedding(entry["text"])).astype("float32")
|
73 |
+
index.add(np.array([embedding]))
|
74 |
+
metadata.append({"page": entry["page"], "text": entry["text"], "images": entry["images"]})
|
75 |
+
|
76 |
+
faiss.write_index(index, "faiss_index.bin")
|
77 |
+
|
78 |
+
with open("metadata.json", "w") as f:
|
79 |
+
json.dump(metadata, f, indent=4)
|
80 |
+
|
81 |
+
return "Embeddings stored successfully!"
|
82 |
+
|
83 |
+
store_embeddings()
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
app = Flask(__name__)
|
88 |
+
|
89 |
+
# Load Model and FAISS Index
|
90 |
+
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
91 |
+
index = faiss.read_index("faiss_index.bin")
|
92 |
+
|
93 |
+
groq_api_key = os.getenv('GROQ_API_KEY')
|
94 |
+
model_name = "llama-3.3-70b-versatile"
|
95 |
+
|
96 |
+
llm = ChatGroq(
|
97 |
+
temperature=0,
|
98 |
+
groq_api_key=groq_api_key,
|
99 |
+
model_name=model_name
|
100 |
+
)
|
101 |
+
|
102 |
+
with open("metadata.json") as f:
|
103 |
+
metadata = json.load(f)
|
104 |
+
|
105 |
+
|
106 |
+
def categorize_query(query):
|
107 |
+
"""
|
108 |
+
Categorizes user queries into different types (greetings, small talk, unrelated, etc.).
|
109 |
+
"""
|
110 |
+
query = query.lower().strip()
|
111 |
+
|
112 |
+
# Greetings
|
113 |
+
greeting_patterns = [
|
114 |
+
r"\bhello\b", r"\bhi\b", r"\bhey\b", r"\bhola\b", r"\bgreetings\b",
|
115 |
+
r"\bwhat('s| is) up\b", r"\bhowdy\b", r"\bhiya\b", r"\byo\b",
|
116 |
+
r"\bgood (morning|afternoon|evening|day|night)\b",
|
117 |
+
r"\bhow (are|r) you\b", r"\bhow's it going\b", r"\bhow have you been\b",
|
118 |
+
r"\bhope you are (doing )?(well|good|fine)\b", r"\bnice to meet you\b",
|
119 |
+
r"\bpleased to meet you\b"
|
120 |
+
]
|
121 |
+
|
122 |
+
# Thank-you messages
|
123 |
+
thank_you_patterns = [
|
124 |
+
r"\bthank(s| you)\b", r"\bthanks a lot\b", r"\bthanks so much\b",
|
125 |
+
r"\bthank you very much\b", r"\bappreciate it\b", r"\bmuch obliged\b",
|
126 |
+
r"\bgrateful\b", r"\bcheers\b"
|
127 |
+
]
|
128 |
+
|
129 |
+
# Small talk
|
130 |
+
small_talk_patterns = [
|
131 |
+
r"\bhow (are|r) you\b", r"\bhow's your day\b", r"\bwhat's up\b",
|
132 |
+
r"\bhow's it going\b", r"\bhow have you been\b", r"\bhope you are well\b"
|
133 |
+
]
|
134 |
+
|
135 |
+
# Unrelated topics
|
136 |
+
unrelated_patterns = [
|
137 |
+
r"\btell me a joke\b", r"\bwho won\b", r"\bwhat is ai\b", r"\bexplain blockchain\b"
|
138 |
+
]
|
139 |
+
|
140 |
+
|
141 |
+
# Goodbye messages
|
142 |
+
goodbye_patterns = [
|
143 |
+
r"\bbye\b", r"\bgoodbye\b", r"\bsee you\b", r"\bhave a nice day\b"
|
144 |
+
]
|
145 |
+
|
146 |
+
# Rude or inappropriate messages
|
147 |
+
rude_patterns = [
|
148 |
+
r"\bstupid\b", r"\bdumb\b", r"\buseless\b", r"\bshut up\b"
|
149 |
+
]
|
150 |
+
|
151 |
+
if any(re.search(pattern, query) for pattern in greeting_patterns):
|
152 |
+
return "greeting"
|
153 |
+
if any(re.search(pattern, query) for pattern in thank_you_patterns):
|
154 |
+
return "thank_you"
|
155 |
+
if any(re.search(pattern, query) for pattern in small_talk_patterns):
|
156 |
+
return "small_talk"
|
157 |
+
if any(re.search(pattern, query) for pattern in unrelated_patterns):
|
158 |
+
return "unrelated"
|
159 |
+
if any(re.search(pattern, query) for pattern in goodbye_patterns):
|
160 |
+
return "goodbye"
|
161 |
+
if any(re.search(pattern, query) for pattern in rude_patterns):
|
162 |
+
return "rude"
|
163 |
+
|
164 |
+
return "normal"
|
165 |
+
|
166 |
+
# Function to Search for Relevant Answers
|
167 |
+
def search_text(query, top_k=2):
|
168 |
+
query_embedding = np.array(model.encode(query, convert_to_numpy=True)).astype("float32").reshape(1, -1)
|
169 |
+
distances, indices = index.search(query_embedding, top_k)
|
170 |
+
|
171 |
+
results = []
|
172 |
+
for idx in indices[0]:
|
173 |
+
if idx >= 0:
|
174 |
+
results.append(metadata[idx])
|
175 |
+
|
176 |
+
return results
|
177 |
+
|
178 |
+
# Serve HTML Page
|
179 |
+
@app.route("/")
|
180 |
+
def home():
|
181 |
+
return render_template("index.html")
|
182 |
+
|
183 |
+
@app.route("/query", methods=["POST"])
|
184 |
+
def query_pdf():
|
185 |
+
query = request.json.get("query")
|
186 |
+
|
187 |
+
query_type = categorize_query(query)
|
188 |
+
|
189 |
+
if query_type == "greeting":
|
190 |
+
return jsonify({"text": "Hello! How can I assist you with Exelsys EasyHR?", "images": []})
|
191 |
+
|
192 |
+
if query_type == "thank_you":
|
193 |
+
return jsonify({"text": "You're welcome! How can I assist you further?", "images": []})
|
194 |
+
|
195 |
+
if query_type == "small_talk":
|
196 |
+
return jsonify({"text": "I'm here to assist with Exelsys EasyHR. How can I help?", "images": []})
|
197 |
+
|
198 |
+
if query_type == "unrelated":
|
199 |
+
return jsonify({"text": "I'm here to assist with Exelsys easyHR queries only.", "images": []})
|
200 |
+
|
201 |
+
if query_type == "vague":
|
202 |
+
return jsonify({"text": "Could you please provide more details?", "images": []})
|
203 |
+
|
204 |
+
if query_type == "goodbye":
|
205 |
+
return jsonify({"text": "You're welcome! Have a great day!", "images": []})
|
206 |
+
|
207 |
+
if query_type == "rude":
|
208 |
+
return jsonify({"text": "I'm here to assist you professionally.", "images": []})
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
# Search for relevant PDF content using FAISS
|
213 |
+
results = search_text(query, top_k=3)
|
214 |
+
|
215 |
+
if not results:
|
216 |
+
return jsonify({"text": "No relevant results found in the PDF.", "images": []})
|
217 |
+
|
218 |
+
# Merge multiple text results
|
219 |
+
retrieved_text = "\n\n---\n\n".join([res["text"] for res in results])
|
220 |
+
print(retrieved_text)
|
221 |
+
|
222 |
+
prompt_extract = PromptTemplate.from_template(
|
223 |
+
"""
|
224 |
+
### YOU ARE AN EXELSYS EASYHR GUIDE ASSISTANT:
|
225 |
+
### INSTRUCTIONS:
|
226 |
+
- Your job is to provide step-by-step guidance for the following user query.
|
227 |
+
- Base your response **only** on the retrieved context from the PDF.
|
228 |
+
- If no relevant information is found, simply respond with: "Not found."
|
229 |
+
- If the user greets you (e.g., "Hello", "Hi", "Good morning"), respond politely but keep it brief.
|
230 |
+
- If the query is unrelated to Exelsys easyHR, respond with: "I'm here to assist with Exelsys easyHR queries only."
|
231 |
+
|
232 |
+
### USER QUERY:
|
233 |
+
{query}
|
234 |
+
|
235 |
+
### CONTEXT FROM PDF:
|
236 |
+
{retrieved_text}
|
237 |
+
|
238 |
+
### ANSWER:
|
239 |
+
"""
|
240 |
+
)
|
241 |
+
|
242 |
+
# Chain the prompt with ChatGroq
|
243 |
+
chain_extract = prompt_extract | llm
|
244 |
+
chat_response = chain_extract.invoke({"query": query, "retrieved_text": retrieved_text})
|
245 |
+
|
246 |
+
# Convert response to string
|
247 |
+
response_text = str(chat_response.content)
|
248 |
+
|
249 |
+
# Determine if images should be included
|
250 |
+
retrieved_images = []
|
251 |
+
if "Not found." not in response_text and "I'm here to assist" not in response_text:
|
252 |
+
retrieved_images = [img for res in results if "images" in res for img in res["images"]]
|
253 |
+
|
254 |
+
# Final response JSON
|
255 |
+
response = {
|
256 |
+
"text": response_text,
|
257 |
+
"images": retrieved_images
|
258 |
+
}
|
259 |
+
|
260 |
+
return jsonify(response)
|
261 |
+
|
262 |
+
if __name__ == "__main__":
|
263 |
+
app.run(host="0.0.0.0", port=7860)
|
264 |
+
|
265 |
+
|