|
import streamlit as st |
|
import pandas as pd |
|
from utils.style import style_zero_context |
|
|
|
@st.cache_data |
|
def load_data(): |
|
df = pd.read_csv("data/zero_context.csv") |
|
if "Row Color" in df.columns: |
|
df.drop(columns=["Row Color"], inplace=True) |
|
return df |
|
|
|
def show(): |
|
st.title("Zero Context Leaderboard") |
|
|
|
raw_df = load_data() |
|
|
|
|
|
styled_df = style_zero_context(raw_df) |
|
|
|
|
|
st.dataframe( |
|
styled_df, |
|
use_container_width=True, |
|
hide_index=True, |
|
height=800, |
|
column_config={ |
|
"Model": st.column_config.TextColumn(width="large"), |
|
"Symbolic": st.column_config.NumberColumn(format="%.2f"), |
|
"Medium": st.column_config.NumberColumn(format="%.2f"), |
|
"Hard": st.column_config.NumberColumn(format="%.2f"), |
|
"1st<50% op": st.column_config.NumberColumn(format="%.0f"), |
|
"1st<10% op": st.column_config.NumberColumn(format="%.0f"), |
|
"Avg. Acc op≤30": st.column_config.NumberColumn(format="%.4f"), |
|
"Average↑": st.column_config.NumberColumn( |
|
format="%.2f", |
|
help="Average across all subsets" |
|
) |
|
} |
|
) |
|
|
|
|
|
st.markdown(""" |
|
**Evaluation Criteria:** |
|
- **AUC Calculation:** ... |
|
- **Threshold Ops:** ... |
|
""") |