Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from wmdetection.models import get_watermarks_detection_model | |
| from wmdetection.pipelines.predictor import WatermarksPredictor | |
| import os, glob | |
| model, transforms = get_watermarks_detection_model( | |
| 'convnext-tiny', | |
| fp16=False, | |
| cache_dir='model_files' | |
| ) | |
| predictor = WatermarksPredictor(model, transforms, 'cpu') | |
| def predict(image, threshold=0.5): | |
| result = predictor.predict_image_confidence(image) | |
| values = result.tolist() | |
| wm_flag = 1 if values[1] >= threshold else 0 | |
| return 'watermarked' if wm_flag else 'clean', "%.4f" % values[1] # prints "watermarked" | |
| examples = glob.glob(os.path.join('images', 'clean', '*')) | |
| examples.extend(glob.glob(os.path.join('images', 'watermark', '*'))) | |
| examples = [[e, 0.5] for e in examples] | |
| iface = gr.Interface(fn=predict, inputs=[gr.inputs.Image(type="pil"), gr.inputs.Number(label="threshold", default=0.5), ], | |
| examples=examples, outputs=[gr.outputs.Textbox(label="class"), gr.outputs.Textbox(label="wm_confidence")]) | |
| iface.launch() |