InNoobWeTrust
commited on
Commit
Β·
fd50cbd
1
Parent(s):
1f4b746
Simplify layout
Browse files- requirements.txt +2 -1
- streamlit_app.py +205 -89
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
streamlit
|
2 |
pandas
|
3 |
yfinance
|
4 |
-
altair
|
|
|
|
1 |
streamlit
|
2 |
pandas
|
3 |
yfinance
|
4 |
+
altair
|
5 |
+
vega
|
streamlit_app.py
CHANGED
@@ -1,47 +1,61 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
import pandas as pd
|
4 |
import yfinance as yf
|
5 |
|
|
|
6 |
import altair as alt
|
7 |
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def clean_etf_data(df):
|
10 |
"""
|
11 |
Clean ETF data
|
12 |
"""
|
|
|
|
|
13 |
# Set date as index
|
14 |
-
|
15 |
-
|
16 |
-
# Format index to date without time
|
17 |
-
df.index = df.index.normalize().date
|
18 |
# Format outflow to negative value
|
|
|
19 |
df.replace(to_replace=r"\(([0-9.]+)\)", value=r"-\1", regex=True, inplace=True)
|
20 |
|
21 |
-
# Copy original
|
22 |
-
df_original = df.copy()
|
23 |
-
|
24 |
# Replace '-' with 0
|
25 |
df.replace("-", 0, inplace=True)
|
26 |
|
27 |
# Convert from strings to numberic
|
28 |
df = df.apply(pd.to_numeric)
|
|
|
29 |
|
30 |
return df, df_original
|
31 |
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
##------------------------- ETF flow --------------------------------------------
|
34 |
|
35 |
# Get Bitcoin spot ETF history
|
36 |
btc_etf_flow = pd.read_html(
|
37 |
"https://farside.co.uk/?p=1321", attrs={"class": "etf"}, skiprows=[1]
|
38 |
)[0]
|
39 |
-
# Drop column 'BTC'
|
40 |
-
# btc_etf_flow.drop(columns = ['BTC'], inplace = True)
|
41 |
# Remove summary lines
|
42 |
btc_etf_flow = btc_etf_flow.iloc[:-4]
|
43 |
# Extract symbols of ETF funds
|
44 |
-
btc_etf_funds = btc_etf_flow.drop(["Date", "Total"], axis=1).columns
|
45 |
|
46 |
# Get Ethereum spot ETF history
|
47 |
eth_etf_flow = pd.read_html(
|
@@ -52,7 +66,9 @@ eth_etf_flow = pd.read_html(
|
|
52 |
# Drop column index level 2
|
53 |
eth_etf_flow.columns = eth_etf_flow.columns.droplevel(2)
|
54 |
# Extract symbols of ETF funds
|
55 |
-
eth_etf_funds =
|
|
|
|
|
56 |
# Merge multi-index columns
|
57 |
eth_etf_flow.columns = eth_etf_flow.columns.map(" | ".join)
|
58 |
# Name first column "Date"
|
@@ -78,8 +94,8 @@ for fund in btc_etf_funds:
|
|
78 |
f"{fund}", interval="1d", period="max", start=btc_etf_flow.index[0]
|
79 |
)["Volume"]
|
80 |
|
81 |
-
#
|
82 |
-
btc_etf_volumes
|
83 |
|
84 |
# Get ETH ETF daily volume
|
85 |
eth_etf_volumes = pd.DataFrame()
|
@@ -88,92 +104,137 @@ for fund in eth_etf_funds:
|
|
88 |
f"{fund}", interval="1d", period="max", start=eth_etf_flow.index[0]
|
89 |
)["Volume"]
|
90 |
|
91 |
-
#
|
92 |
-
eth_etf_volumes
|
93 |
|
94 |
##------------------------- Asset price --------------------------------------------
|
95 |
|
96 |
# Get BTC price history
|
97 |
btc_price = yf.download(
|
98 |
-
"BTC-USD", interval="1d", period="max", start=btc_etf_flow
|
99 |
)
|
100 |
btc_price = btc_price.Close
|
101 |
-
#
|
102 |
-
btc_price
|
103 |
|
104 |
# Get ETH price history
|
105 |
eth_price = yf.download(
|
106 |
-
"ETH-USD", interval="1d", period="max", start=eth_etf_flow
|
107 |
)
|
108 |
eth_price = eth_price.Close
|
109 |
-
#
|
110 |
-
eth_price
|
111 |
|
112 |
|
113 |
-
|
114 |
-
# Set page config
|
115 |
-
st.set_page_config(layout="wide", page_icon="π")
|
116 |
-
# Set page title
|
117 |
-
st.title("Crypto ETF Dashboard")
|
118 |
-
|
119 |
-
# Sidebar to choose ETF asset to view
|
120 |
-
st.sidebar.title("Crypto ETF Dashboard")
|
121 |
-
# Dropdown selection to choose asset (BTC, ETH)
|
122 |
-
asset = st.sidebar.selectbox("Choose asset", ("BTC", "ETH"))
|
123 |
-
|
124 |
-
# Display ETF data
|
125 |
if asset == "BTC":
|
126 |
-
st.header("BTC ETF")
|
127 |
-
etf_flow = btc_etf_flow
|
128 |
etf_volumes = btc_etf_volumes
|
129 |
price = btc_price
|
|
|
|
|
|
|
130 |
else:
|
131 |
-
st.header("ETH ETF")
|
132 |
-
etf_flow = eth_etf_flow
|
133 |
etf_volumes = eth_etf_volumes
|
134 |
price = eth_price
|
135 |
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
# Section trading volume
|
140 |
-
st.subheader(f"{asset} ETF Trading volume")
|
141 |
trading_vol_fig = (
|
142 |
-
alt.Chart(etf_volumes
|
143 |
-
.transform_fold(
|
|
|
|
|
144 |
.mark_bar()
|
145 |
.encode(
|
146 |
-
x=alt.X("
|
147 |
-
y=alt.Y("Volume:Q"
|
148 |
color="Funds:N",
|
149 |
)
|
150 |
)
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
-
#
|
154 |
-
st.subheader(f"{asset} ETF Net flow individual funds")
|
155 |
net_flow_individual_fig = (
|
156 |
-
alt.Chart(etf_flow_individual
|
157 |
.transform_fold(
|
158 |
-
etf_flow_individual.columns,
|
159 |
as_=["Funds", "Net Flow"],
|
160 |
)
|
161 |
.mark_bar()
|
162 |
.encode(
|
163 |
-
x=alt.X("
|
164 |
-
y=alt.Y("Net Flow:Q"
|
165 |
color="Funds:N",
|
166 |
)
|
167 |
)
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
-
# Section net flow total vs asset price
|
171 |
-
st.subheader(f"{asset} ETF Net flow total vs asset price")
|
172 |
net_flow_total_fig = (
|
173 |
-
alt.Chart(etf_flow_total
|
174 |
.mark_bar()
|
175 |
.encode(
|
176 |
-
x=alt.X("
|
177 |
y=alt.Y("Total:Q"),
|
178 |
color=alt.condition(
|
179 |
alt.datum.Total > 0,
|
@@ -184,61 +245,116 @@ if __name__ == "__main__":
|
|
184 |
)
|
185 |
# Line chart of price
|
186 |
price_fig = (
|
187 |
-
alt.Chart(price
|
188 |
.mark_line()
|
189 |
.encode(
|
190 |
-
x=alt.X("
|
191 |
y=alt.Y("Close:Q", title="Price"),
|
192 |
color=alt.value("crimson"),
|
193 |
)
|
194 |
)
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
200 |
)
|
201 |
|
202 |
-
# Section cumulative flow individual vs asset price
|
203 |
-
st.subheader(f"{asset} ETF Cumulative flow of individual funds vs asset price")
|
204 |
-
cum_flow_individual = etf_flow_individual.cumsum()
|
205 |
# Stacking area chart of flow from individual funds
|
206 |
cum_flow_individual_net_fig = (
|
207 |
-
alt.Chart(cum_flow_individual
|
208 |
-
.transform_fold(
|
|
|
|
|
|
|
209 |
.mark_area()
|
210 |
.encode(
|
211 |
-
x=alt.X("
|
212 |
-
y=alt.Y("Net Flow:Q"
|
213 |
-
color=alt.Color("Funds:N"
|
214 |
)
|
215 |
)
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
219 |
)
|
220 |
|
221 |
-
# Section cumulative flow total vs asset price
|
222 |
-
st.subheader(f"{asset} ETF Cumulative flow total vs asset price")
|
223 |
-
cum_flow_total = etf_flow_total.cumsum()
|
224 |
# Area chart for cumulative flow
|
225 |
cum_flow_total_fig = (
|
226 |
-
alt.Chart(cum_flow_total
|
227 |
.transform_calculate(
|
228 |
negative="datum.Total < 0",
|
229 |
)
|
230 |
.mark_area()
|
231 |
.encode(
|
232 |
-
x=alt.X("
|
233 |
y=alt.Y("Total:Q", impute={"value": 0}),
|
234 |
-
color=alt.Color(
|
235 |
-
scheme="set2"
|
236 |
),
|
237 |
)
|
238 |
)
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import yfinance as yf
|
3 |
|
4 |
+
import streamlit as st
|
5 |
import altair as alt
|
6 |
|
7 |
+
from types import SimpleNamespace
|
8 |
+
|
9 |
+
alt.renderers.set_embed_options(theme="dark")
|
10 |
+
|
11 |
|
12 |
def clean_etf_data(df):
|
13 |
"""
|
14 |
Clean ETF data
|
15 |
"""
|
16 |
+
# Copy original
|
17 |
+
df_original = df.copy()
|
18 |
# Set date as index
|
19 |
+
df_original["Date"] = pd.to_datetime(df_original["Date"])
|
20 |
+
|
|
|
|
|
21 |
# Format outflow to negative value
|
22 |
+
df = df.drop(columns="Date")
|
23 |
df.replace(to_replace=r"\(([0-9.]+)\)", value=r"-\1", regex=True, inplace=True)
|
24 |
|
|
|
|
|
|
|
25 |
# Replace '-' with 0
|
26 |
df.replace("-", 0, inplace=True)
|
27 |
|
28 |
# Convert from strings to numberic
|
29 |
df = df.apply(pd.to_numeric)
|
30 |
+
df["Date"] = df_original["Date"]
|
31 |
|
32 |
return df, df_original
|
33 |
|
34 |
|
35 |
+
def extract_date_index(df):
|
36 |
+
"""
|
37 |
+
Extract index from dataframe as Date
|
38 |
+
"""
|
39 |
+
# Convert Series to DataFrame
|
40 |
+
if isinstance(df, pd.Series):
|
41 |
+
df = df.to_frame()
|
42 |
+
df = df.reset_index(names="Date")
|
43 |
+
# Set date as index
|
44 |
+
df.Date = pd.to_datetime(df.Date)
|
45 |
+
|
46 |
+
return df
|
47 |
+
|
48 |
+
|
49 |
##------------------------- ETF flow --------------------------------------------
|
50 |
|
51 |
# Get Bitcoin spot ETF history
|
52 |
btc_etf_flow = pd.read_html(
|
53 |
"https://farside.co.uk/?p=1321", attrs={"class": "etf"}, skiprows=[1]
|
54 |
)[0]
|
|
|
|
|
55 |
# Remove summary lines
|
56 |
btc_etf_flow = btc_etf_flow.iloc[:-4]
|
57 |
# Extract symbols of ETF funds
|
58 |
+
btc_etf_funds = btc_etf_flow.drop(["Date", "Total"], axis=1).columns.to_list()
|
59 |
|
60 |
# Get Ethereum spot ETF history
|
61 |
eth_etf_flow = pd.read_html(
|
|
|
66 |
# Drop column index level 2
|
67 |
eth_etf_flow.columns = eth_etf_flow.columns.droplevel(2)
|
68 |
# Extract symbols of ETF funds
|
69 |
+
eth_etf_funds = (
|
70 |
+
eth_etf_flow.drop("Total", axis=1).columns[1:].get_level_values(1).to_list()
|
71 |
+
)
|
72 |
# Merge multi-index columns
|
73 |
eth_etf_flow.columns = eth_etf_flow.columns.map(" | ".join)
|
74 |
# Name first column "Date"
|
|
|
94 |
f"{fund}", interval="1d", period="max", start=btc_etf_flow.index[0]
|
95 |
)["Volume"]
|
96 |
|
97 |
+
# Extract Date column from index
|
98 |
+
btc_etf_volumes = extract_date_index(btc_etf_volumes)
|
99 |
|
100 |
# Get ETH ETF daily volume
|
101 |
eth_etf_volumes = pd.DataFrame()
|
|
|
104 |
f"{fund}", interval="1d", period="max", start=eth_etf_flow.index[0]
|
105 |
)["Volume"]
|
106 |
|
107 |
+
# Extract Date column from index
|
108 |
+
eth_etf_volumes = extract_date_index(eth_etf_volumes)
|
109 |
|
110 |
##------------------------- Asset price --------------------------------------------
|
111 |
|
112 |
# Get BTC price history
|
113 |
btc_price = yf.download(
|
114 |
+
"BTC-USD", interval="1d", period="max", start=btc_etf_flow["Date"][0]
|
115 |
)
|
116 |
btc_price = btc_price.Close
|
117 |
+
# Extract Date column from index
|
118 |
+
btc_price = extract_date_index(btc_price)
|
119 |
|
120 |
# Get ETH price history
|
121 |
eth_price = yf.download(
|
122 |
+
"ETH-USD", interval="1d", period="max", start=eth_etf_flow["Date"][0]
|
123 |
)
|
124 |
eth_price = eth_price.Close
|
125 |
+
# Extract Date column from index
|
126 |
+
eth_price = extract_date_index(eth_price)
|
127 |
|
128 |
|
129 |
+
def gen_data(asset):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
if asset == "BTC":
|
|
|
|
|
131 |
etf_volumes = btc_etf_volumes
|
132 |
price = btc_price
|
133 |
+
|
134 |
+
etf_flow_individual = btc_etf_flow.drop(columns="Total")
|
135 |
+
etf_flow_total = btc_etf_flow[["Date", "Total"]]
|
136 |
else:
|
|
|
|
|
137 |
etf_volumes = eth_etf_volumes
|
138 |
price = eth_price
|
139 |
|
140 |
+
etf_flow_individual = eth_etf_flow.drop(columns="Total")
|
141 |
+
etf_flow_total = eth_etf_flow[["Date", "Total"]]
|
142 |
+
|
143 |
+
cum_flow_individual = etf_flow_individual.drop(columns="Date").cumsum()
|
144 |
+
cum_flow_individual["Date"] = etf_flow_individual.Date
|
145 |
+
cum_flow_total = pd.DataFrame(
|
146 |
+
{"Date": etf_flow_total.Date, "Total": etf_flow_total.Total.cumsum()}
|
147 |
+
)
|
148 |
+
|
149 |
+
return SimpleNamespace(
|
150 |
+
etf_volumes=etf_volumes,
|
151 |
+
price=price,
|
152 |
+
etf_flow_individual=etf_flow_individual,
|
153 |
+
etf_flow_total=etf_flow_total,
|
154 |
+
cum_flow_individual=cum_flow_individual,
|
155 |
+
cum_flow_total=cum_flow_total,
|
156 |
+
)
|
157 |
+
|
158 |
+
|
159 |
+
def gen_charts(asset, chart_size={"width": 560, "height": 300}):
|
160 |
+
# Gen data
|
161 |
+
data = gen_data(asset)
|
162 |
+
etf_volumes = data.etf_volumes
|
163 |
+
price = data.price
|
164 |
+
etf_flow_individual = data.etf_flow_individual
|
165 |
+
etf_flow_total = data.etf_flow_total
|
166 |
+
cum_flow_individual = data.cum_flow_individual
|
167 |
+
cum_flow_total = data.cum_flow_total
|
168 |
|
|
|
|
|
169 |
trading_vol_fig = (
|
170 |
+
alt.Chart(etf_volumes)
|
171 |
+
.transform_fold(
|
172 |
+
etf_volumes.drop(columns="Date").columns.to_list(), as_=["Funds", "Volume"]
|
173 |
+
)
|
174 |
.mark_bar()
|
175 |
.encode(
|
176 |
+
x=alt.X("Date:T", axis=alt.Axis(tickCount="day")),
|
177 |
+
y=alt.Y("Volume:Q"),
|
178 |
color="Funds:N",
|
179 |
)
|
180 |
)
|
181 |
+
trading_vol_avg_fig = (
|
182 |
+
alt.Chart(etf_volumes)
|
183 |
+
.transform_fold(
|
184 |
+
etf_volumes.drop(columns="Date").columns.to_list(), as_=["Funds", "Volume"]
|
185 |
+
)
|
186 |
+
.mark_line()
|
187 |
+
.encode(
|
188 |
+
x=alt.X("Date:T", axis=alt.Axis(tickCount="day")),
|
189 |
+
y=alt.Y("mean(Volume):Q", title="Average Volume"),
|
190 |
+
color=alt.value("crimson"),
|
191 |
+
)
|
192 |
+
)
|
193 |
+
# Combine trading volume and average trading volume
|
194 |
+
trading_vol_fig += trading_vol_avg_fig
|
195 |
+
trading_vol_fig = trading_vol_fig.resolve_scale(
|
196 |
+
y="independent",
|
197 |
+
).properties(
|
198 |
+
title=f"{asset} ETF trading volume",
|
199 |
+
**chart_size,
|
200 |
+
)
|
201 |
|
202 |
+
# Net flow individual
|
|
|
203 |
net_flow_individual_fig = (
|
204 |
+
alt.Chart(etf_flow_individual)
|
205 |
.transform_fold(
|
206 |
+
etf_flow_individual.drop(columns="Date").columns.to_list(),
|
207 |
as_=["Funds", "Net Flow"],
|
208 |
)
|
209 |
.mark_bar()
|
210 |
.encode(
|
211 |
+
x=alt.X("Date:T", axis=alt.Axis(tickCount="day")),
|
212 |
+
y=alt.Y("Net Flow:Q"),
|
213 |
color="Funds:N",
|
214 |
)
|
215 |
)
|
216 |
+
net_flow_total_line_fig = (
|
217 |
+
alt.Chart(etf_flow_total)
|
218 |
+
.mark_line()
|
219 |
+
.encode(
|
220 |
+
x=alt.X("Date:T", axis=alt.Axis(tickCount="day")),
|
221 |
+
y=alt.Y("Total:Q"),
|
222 |
+
color=alt.value("crimson"),
|
223 |
+
)
|
224 |
+
)
|
225 |
+
net_flow_individual_fig += net_flow_total_line_fig
|
226 |
+
net_flow_individual_fig = net_flow_individual_fig.resolve_scale(
|
227 |
+
y="independent",
|
228 |
+
).properties(
|
229 |
+
title=f"{asset} ETF net flow of individual funds",
|
230 |
+
**chart_size,
|
231 |
+
)
|
232 |
|
|
|
|
|
233 |
net_flow_total_fig = (
|
234 |
+
alt.Chart(etf_flow_total)
|
235 |
.mark_bar()
|
236 |
.encode(
|
237 |
+
x=alt.X("Date:T", axis=alt.Axis(tickCount="day")),
|
238 |
y=alt.Y("Total:Q"),
|
239 |
color=alt.condition(
|
240 |
alt.datum.Total > 0,
|
|
|
245 |
)
|
246 |
# Line chart of price
|
247 |
price_fig = (
|
248 |
+
alt.Chart(price)
|
249 |
.mark_line()
|
250 |
.encode(
|
251 |
+
x=alt.X("Date:T", axis=alt.Axis(tickCount="day")),
|
252 |
y=alt.Y("Close:Q", title="Price"),
|
253 |
color=alt.value("crimson"),
|
254 |
)
|
255 |
)
|
256 |
+
|
257 |
+
net_flow_total_fig += price_fig
|
258 |
+
net_flow_total_fig = net_flow_total_fig.resolve_scale(
|
259 |
+
y="independent",
|
260 |
+
).properties(
|
261 |
+
title=f"{asset} ETF net flow total vs asset price",
|
262 |
+
**chart_size,
|
263 |
)
|
264 |
|
|
|
|
|
|
|
265 |
# Stacking area chart of flow from individual funds
|
266 |
cum_flow_individual_net_fig = (
|
267 |
+
alt.Chart(cum_flow_individual)
|
268 |
+
.transform_fold(
|
269 |
+
cum_flow_individual.drop(columns="Date").columns.to_list(),
|
270 |
+
as_=["Funds", "Net Flow"],
|
271 |
+
)
|
272 |
.mark_area()
|
273 |
.encode(
|
274 |
+
x=alt.X("Date:T", axis=alt.Axis(tickCount="day")),
|
275 |
+
y=alt.Y("Net Flow:Q"),
|
276 |
+
color=alt.Color("Funds:N", scale=alt.Scale(scheme="tableau20")),
|
277 |
)
|
278 |
)
|
279 |
+
cum_flow_individual_net_fig += price_fig
|
280 |
+
cum_flow_individual_net_fig = cum_flow_individual_net_fig.resolve_scale(
|
281 |
+
y="independent",
|
282 |
+
).properties(
|
283 |
+
title=f"{asset} ETF cumulative flow of individual funds vs asset price",
|
284 |
+
**chart_size,
|
285 |
)
|
286 |
|
|
|
|
|
|
|
287 |
# Area chart for cumulative flow
|
288 |
cum_flow_total_fig = (
|
289 |
+
alt.Chart(cum_flow_total)
|
290 |
.transform_calculate(
|
291 |
negative="datum.Total < 0",
|
292 |
)
|
293 |
.mark_area()
|
294 |
.encode(
|
295 |
+
x=alt.X("Date:T", axis=alt.Axis(tickCount="day")),
|
296 |
y=alt.Y("Total:Q", impute={"value": 0}),
|
297 |
+
color=alt.Color(
|
298 |
+
"negative:N", title="Negative Flow", scale=alt.Scale(scheme="set2")
|
299 |
),
|
300 |
)
|
301 |
)
|
302 |
+
cum_flow_total_fig += price_fig
|
303 |
+
cum_flow_total_fig = cum_flow_total_fig.resolve_scale(
|
304 |
+
y="independent",
|
305 |
+
).properties(
|
306 |
+
title=f"{asset} ETF cumulative flow total vs asset price",
|
307 |
+
**chart_size,
|
308 |
+
)
|
309 |
+
|
310 |
+
return SimpleNamespace(
|
311 |
+
trading_vol_fig=trading_vol_fig,
|
312 |
+
net_flow_individual_fig=net_flow_individual_fig,
|
313 |
+
net_flow_total_fig=net_flow_total_fig,
|
314 |
+
cum_flow_individual_net_fig=cum_flow_individual_net_fig,
|
315 |
+
cum_flow_total_fig=cum_flow_total_fig,
|
316 |
)
|
317 |
+
|
318 |
+
|
319 |
+
def compound_chart(chart_size={"width": 560, "height": 300}):
|
320 |
+
btc_charts = gen_charts("BTC", chart_size)
|
321 |
+
eth_charts = gen_charts("ETH", chart_size)
|
322 |
+
|
323 |
+
# Vertical concat the charts in each asset into single colume of that asset
|
324 |
+
all_charts_btc = (
|
325 |
+
btc_charts.trading_vol_fig
|
326 |
+
& btc_charts.net_flow_individual_fig
|
327 |
+
& btc_charts.net_flow_total_fig
|
328 |
+
& btc_charts.cum_flow_individual_net_fig
|
329 |
+
& btc_charts.cum_flow_total_fig
|
330 |
+
).resolve_scale(color="independent")
|
331 |
+
all_charts_eth = (
|
332 |
+
eth_charts.trading_vol_fig
|
333 |
+
& eth_charts.net_flow_individual_fig
|
334 |
+
& eth_charts.net_flow_total_fig
|
335 |
+
& eth_charts.cum_flow_individual_net_fig
|
336 |
+
& eth_charts.cum_flow_total_fig
|
337 |
+
).resolve_scale(color="independent")
|
338 |
+
# Horizontal concat the charts for btc and eth
|
339 |
+
all_charts = (all_charts_btc | all_charts_eth).resolve_scale(color="independent")
|
340 |
+
|
341 |
+
return all_charts
|
342 |
+
|
343 |
+
|
344 |
+
if __name__ == "__main__":
|
345 |
+
# Set page config
|
346 |
+
st.set_page_config(layout="wide", page_icon="π")
|
347 |
+
|
348 |
+
chart = compound_chart(chart_size={"width": 560, "height": 300})
|
349 |
+
all_charts = (all_charts_btc | all_charts_eth).resolve_scale(color="independent")
|
350 |
+
|
351 |
+
return all_charts
|
352 |
+
|
353 |
+
|
354 |
+
if __name__ == "__main__":
|
355 |
+
# Set page config
|
356 |
+
st.set_page_config(layout="wide", page_icon="π")
|
357 |
+
|
358 |
+
chart = compound_chart(chart_size={"width": 560, "height": 300})
|
359 |
+
# Display charts
|
360 |
+
st.altair_chart(chart, use_container_width=True)
|