InNoobWeTrust
commited on
Commit
·
cf1b1b4
1
Parent(s):
b69e760
build: transition to uv project
Browse files- .gitignore +2 -1
- .python-version +1 -0
- pkgx.yml +1 -0
- pyproject.toml +17 -0
- requirements.txt +1 -1
- streamlit_app.py +183 -108
.gitignore
CHANGED
@@ -164,4 +164,5 @@ cython_debug/
|
|
164 |
#.idea/
|
165 |
|
166 |
|
167 |
-
.DS_Store
|
|
|
|
164 |
#.idea/
|
165 |
|
166 |
|
167 |
+
.DS_Store
|
168 |
+
uv.lock
|
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.10
|
pkgx.yml
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
dependencies:
|
2 |
nushell.sh: ^0
|
|
|
|
1 |
dependencies:
|
2 |
nushell.sh: ^0
|
3 |
+
uv: ^0
|
pyproject.toml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "crypto-etf-tracker"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.10"
|
7 |
+
dependencies = [
|
8 |
+
"altair>=5.5.0",
|
9 |
+
"cloudscraper>=1.2.71",
|
10 |
+
"lxml>=5.3.1",
|
11 |
+
"pandas>=2.2.3",
|
12 |
+
"pygwalker>=0.4.9.14",
|
13 |
+
"streamlit>=1.43.2",
|
14 |
+
"vega>=4.1.0",
|
15 |
+
"workalendar>=17.0.0",
|
16 |
+
"yfinance[nospam,repair]==0.2.54",
|
17 |
+
]
|
requirements.txt
CHANGED
@@ -6,4 +6,4 @@ altair
|
|
6 |
vega
|
7 |
workalendar
|
8 |
pygwalker
|
9 |
-
cloudscraper
|
|
|
6 |
vega
|
7 |
workalendar
|
8 |
pygwalker
|
9 |
+
cloudscraper
|
streamlit_app.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
|
3 |
import streamlit as st
|
@@ -17,6 +19,7 @@ alt.renderers.set_embed_options(theme="dark")
|
|
17 |
def fetch_asset(asset):
|
18 |
return fetch(asset)
|
19 |
|
|
|
20 |
def gen_charts(asset, chart_size={"width": 560, "height": 150}):
|
21 |
# Gen data
|
22 |
data = fetch_asset(asset)
|
@@ -28,122 +31,180 @@ def gen_charts(asset, chart_size={"width": 560, "height": 150}):
|
|
28 |
cum_flow_total = data.cum_flow_total
|
29 |
|
30 |
# Create bindings for interval selection
|
31 |
-
scale_selection = alt.selection_interval(encodings=["x"],bind="scales")
|
32 |
|
33 |
# Line chart of price
|
34 |
price = (
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
)
|
46 |
|
47 |
trading_vol_individual = (
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
)
|
62 |
trading_vol_total = (
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
)
|
77 |
|
78 |
# Net flow individual
|
79 |
net_flow_individual = (
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
)
|
95 |
net_flow_total = (
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
)
|
111 |
|
112 |
# Stacking area chart of flow from individual funds
|
113 |
cum_flow_individual = (
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
)
|
129 |
|
130 |
# Area chart for cumulative flow
|
131 |
cum_flow_total = (
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
)
|
148 |
|
149 |
return SimpleNamespace(
|
@@ -156,27 +217,33 @@ def gen_charts(asset, chart_size={"width": 560, "height": 150}):
|
|
156 |
cum_flow_total=cum_flow_total,
|
157 |
)
|
158 |
|
|
|
159 |
def asset_charts(asset: str, chart_size={"width": "container", "height": 150}):
|
160 |
charts = gen_charts(asset, chart_size)
|
161 |
|
162 |
# Vertical concat the charts in each asset into single column of that asset
|
163 |
all_charts = (
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
175 |
)
|
176 |
|
177 |
return all_charts
|
178 |
|
179 |
-
|
|
|
180 |
# Set page config
|
181 |
st.set_page_config(layout="wide", page_icon="📈")
|
182 |
# Initialize pygwalker communication
|
@@ -196,8 +263,12 @@ if __name__ == "__main__":
|
|
196 |
eth = fetch_asset("ETH")
|
197 |
|
198 |
with dashboard_tab:
|
199 |
-
btc_charts = asset_charts(
|
200 |
-
|
|
|
|
|
|
|
|
|
201 |
# Display charts
|
202 |
btc_chart_col, eth_chart_col = st.columns(2)
|
203 |
with btc_chart_col:
|
@@ -239,3 +310,7 @@ if __name__ == "__main__":
|
|
239 |
df = pd.concat([btc_price, eth_price])
|
240 |
df.Date = df.Date.astype(str)
|
241 |
StreamlitRenderer(df).explorer()
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env -S pkgx [email protected] uv run -- streamlit run
|
2 |
+
|
3 |
import pandas as pd
|
4 |
|
5 |
import streamlit as st
|
|
|
19 |
def fetch_asset(asset):
|
20 |
return fetch(asset)
|
21 |
|
22 |
+
|
23 |
def gen_charts(asset, chart_size={"width": 560, "height": 150}):
|
24 |
# Gen data
|
25 |
data = fetch_asset(asset)
|
|
|
31 |
cum_flow_total = data.cum_flow_total
|
32 |
|
33 |
# Create bindings for interval selection
|
34 |
+
scale_selection = alt.selection_interval(encodings=["x"], bind="scales")
|
35 |
|
36 |
# Line chart of price
|
37 |
price = (
|
38 |
+
(
|
39 |
+
alt.Chart(price)
|
40 |
+
.mark_line()
|
41 |
+
.encode(
|
42 |
+
x=alt.X(
|
43 |
+
"Date:T",
|
44 |
+
axis=alt.Axis(tickCount={"interval": "month", "step": 1}),
|
45 |
+
title="",
|
46 |
+
),
|
47 |
+
y=alt.Y("Price:Q").scale(zero=False),
|
48 |
+
color=alt.value("crimson"),
|
49 |
+
)
|
50 |
+
)
|
51 |
+
.add_params(scale_selection)
|
52 |
+
.properties(
|
53 |
+
width=chart_size["width"],
|
54 |
+
height=chart_size["height"],
|
55 |
+
)
|
56 |
)
|
57 |
|
58 |
trading_vol_individual = (
|
59 |
+
(
|
60 |
+
alt.Chart(etf_volumes)
|
61 |
+
.transform_fold(
|
62 |
+
etf_volumes.drop(columns="Date").columns.to_list(),
|
63 |
+
as_=["Funds", "Volume"],
|
64 |
+
)
|
65 |
+
.mark_line()
|
66 |
+
.encode(
|
67 |
+
x=alt.X(
|
68 |
+
"Date:T",
|
69 |
+
axis=alt.Axis(tickCount={"interval": "month", "step": 1}),
|
70 |
+
title="",
|
71 |
+
),
|
72 |
+
y=alt.Y("Volume:Q", title="Trading Volume Individual"),
|
73 |
+
color="Funds:N",
|
74 |
+
)
|
75 |
+
)
|
76 |
+
.add_params(scale_selection)
|
77 |
+
.properties(
|
78 |
+
width=chart_size["width"],
|
79 |
+
height=chart_size["height"],
|
80 |
+
)
|
81 |
)
|
82 |
trading_vol_total = (
|
83 |
+
(
|
84 |
+
alt.Chart(etf_volumes)
|
85 |
+
.transform_fold(
|
86 |
+
etf_volumes.drop(columns="Date").columns.to_list(),
|
87 |
+
as_=["Funds", "Volume"],
|
88 |
+
)
|
89 |
+
.mark_rule()
|
90 |
+
.encode(
|
91 |
+
x=alt.X(
|
92 |
+
"Date:T",
|
93 |
+
axis=alt.Axis(tickCount={"interval": "month", "step": 1}),
|
94 |
+
title="",
|
95 |
+
),
|
96 |
+
y=alt.Y("sum(Volume):Q", title="Trading Volume Total"),
|
97 |
+
color=alt.value("teal"),
|
98 |
+
)
|
99 |
+
)
|
100 |
+
.add_params(scale_selection)
|
101 |
+
.properties(
|
102 |
+
width=chart_size["width"],
|
103 |
+
height=chart_size["height"],
|
104 |
+
)
|
105 |
)
|
106 |
|
107 |
# Net flow individual
|
108 |
net_flow_individual = (
|
109 |
+
(
|
110 |
+
alt.Chart(etf_flow_individual)
|
111 |
+
.transform_fold(
|
112 |
+
etf_flow_individual.drop(columns="Date").columns.to_list(),
|
113 |
+
as_=["Funds", "Net Flow"],
|
114 |
+
)
|
115 |
+
.mark_line()
|
116 |
+
.encode(
|
117 |
+
x=alt.X(
|
118 |
+
"Date:T",
|
119 |
+
axis=alt.Axis(tickCount={"interval": "month", "step": 1}),
|
120 |
+
title="",
|
121 |
+
),
|
122 |
+
y=alt.Y("Net Flow:Q", title="Net Flow Individual"),
|
123 |
+
color="Funds:N",
|
124 |
+
)
|
125 |
+
)
|
126 |
+
.add_params(scale_selection)
|
127 |
+
.properties(
|
128 |
+
width=chart_size["width"],
|
129 |
+
height=chart_size["height"],
|
130 |
+
)
|
131 |
)
|
132 |
net_flow_total = (
|
133 |
+
(
|
134 |
+
alt.Chart(etf_flow_total)
|
135 |
+
.mark_rule()
|
136 |
+
.encode(
|
137 |
+
x=alt.X(
|
138 |
+
"Date:T",
|
139 |
+
axis=alt.Axis(tickCount={"interval": "month", "step": 1}),
|
140 |
+
title="",
|
141 |
+
),
|
142 |
+
y=alt.Y("Total:Q", title="Net Flow Total"),
|
143 |
+
color=alt.condition(
|
144 |
+
alt.datum.Total > 0,
|
145 |
+
alt.value("seagreen"), # The positive color
|
146 |
+
alt.value("orangered"), # The negative color
|
147 |
+
),
|
148 |
+
)
|
149 |
+
)
|
150 |
+
.add_params(scale_selection)
|
151 |
+
.properties(
|
152 |
+
width=chart_size["width"],
|
153 |
+
height=chart_size["height"],
|
154 |
+
)
|
155 |
)
|
156 |
|
157 |
# Stacking area chart of flow from individual funds
|
158 |
cum_flow_individual = (
|
159 |
+
(
|
160 |
+
alt.Chart(cum_flow_individual)
|
161 |
+
.transform_fold(
|
162 |
+
cum_flow_individual.drop(columns="Date").columns.to_list(),
|
163 |
+
as_=["Funds", "Net Flow"],
|
164 |
+
)
|
165 |
+
.mark_area()
|
166 |
+
.encode(
|
167 |
+
x=alt.X(
|
168 |
+
"Date:T",
|
169 |
+
axis=alt.Axis(tickCount={"interval": "month", "step": 1}),
|
170 |
+
title="",
|
171 |
+
),
|
172 |
+
y=alt.Y("Net Flow:Q", title="Cumulative Flow Individual"),
|
173 |
+
color=alt.Color("Funds:N", scale=alt.Scale(scheme="tableau20")),
|
174 |
+
)
|
175 |
+
)
|
176 |
+
.add_params(scale_selection)
|
177 |
+
.properties(
|
178 |
+
width=chart_size["width"],
|
179 |
+
height=chart_size["height"],
|
180 |
+
)
|
181 |
)
|
182 |
|
183 |
# Area chart for cumulative flow
|
184 |
cum_flow_total = (
|
185 |
+
(
|
186 |
+
alt.Chart(cum_flow_total)
|
187 |
+
.transform_calculate(
|
188 |
+
negative="datum.Total < 0",
|
189 |
+
)
|
190 |
+
.mark_area()
|
191 |
+
.encode(
|
192 |
+
x=alt.X(
|
193 |
+
"Date:T",
|
194 |
+
axis=alt.Axis(tickCount={"interval": "month", "step": 1}),
|
195 |
+
title="",
|
196 |
+
),
|
197 |
+
y=alt.Y("Total:Q", title="Cumulative Flow Total", impute={"value": 0}),
|
198 |
+
color=alt.Color(
|
199 |
+
"negative:N", title="Negative Flow", scale=alt.Scale(scheme="set2")
|
200 |
+
),
|
201 |
+
)
|
202 |
+
)
|
203 |
+
.add_params(scale_selection)
|
204 |
+
.properties(
|
205 |
+
width=chart_size["width"],
|
206 |
+
height=chart_size["height"],
|
207 |
+
)
|
208 |
)
|
209 |
|
210 |
return SimpleNamespace(
|
|
|
217 |
cum_flow_total=cum_flow_total,
|
218 |
)
|
219 |
|
220 |
+
|
221 |
def asset_charts(asset: str, chart_size={"width": "container", "height": 150}):
|
222 |
charts = gen_charts(asset, chart_size)
|
223 |
|
224 |
# Vertical concat the charts in each asset into single column of that asset
|
225 |
all_charts = (
|
226 |
+
(
|
227 |
+
charts.price
|
228 |
+
& charts.trading_vol_individual
|
229 |
+
& charts.trading_vol_total
|
230 |
+
& charts.net_flow_individual
|
231 |
+
& charts.net_flow_total
|
232 |
+
& charts.cum_flow_individual
|
233 |
+
& charts.cum_flow_total
|
234 |
+
)
|
235 |
+
.resolve_scale(
|
236 |
+
color="independent",
|
237 |
+
)
|
238 |
+
.properties(
|
239 |
+
title=f"{asset} ETF",
|
240 |
+
)
|
241 |
)
|
242 |
|
243 |
return all_charts
|
244 |
|
245 |
+
|
246 |
+
def app():
|
247 |
# Set page config
|
248 |
st.set_page_config(layout="wide", page_icon="📈")
|
249 |
# Initialize pygwalker communication
|
|
|
263 |
eth = fetch_asset("ETH")
|
264 |
|
265 |
with dashboard_tab:
|
266 |
+
btc_charts = asset_charts(
|
267 |
+
"BTC", chart_size={"width": "container", "height": 150}
|
268 |
+
)
|
269 |
+
eth_charts = asset_charts(
|
270 |
+
"ETH", chart_size={"width": "container", "height": 150}
|
271 |
+
)
|
272 |
# Display charts
|
273 |
btc_chart_col, eth_chart_col = st.columns(2)
|
274 |
with btc_chart_col:
|
|
|
310 |
df = pd.concat([btc_price, eth_price])
|
311 |
df.Date = df.Date.astype(str)
|
312 |
StreamlitRenderer(df).explorer()
|
313 |
+
|
314 |
+
|
315 |
+
if __name__ == "__main__":
|
316 |
+
app()
|