crypto-etf-tracker / streamlit_app.py
InNoobWeTrust
refactor: improve UX for zoom and span
0fa6f3b
raw
history blame
8.19 kB
import pandas as pd
import streamlit as st
from streamlit.components.v1 import iframe
import altair as alt
from pygwalker.api.streamlit import StreamlitRenderer, init_streamlit_comm
from types import SimpleNamespace
from df import fetch
alt.renderers.set_embed_options(theme="dark")
@st.cache_data(ttl="30m")
def fetch_asset(asset):
return fetch(asset)
def gen_charts(asset, chart_size={"width": 560, "height": 150}):
# Gen data
data = fetch_asset(asset)
etf_volumes = data.etf_volumes
price = data.price
etf_flow_individual = data.etf_flow_individual
etf_flow_total = data.etf_flow_total
cum_flow_individual = data.cum_flow_individual
cum_flow_total = data.cum_flow_total
# Create bindings for interval selection
scale_selection = alt.selection_interval(encodings=["x"],bind="scales")
# Line chart of price
price = (
alt.Chart(price)
.mark_line()
.encode(
x=alt.X("Date:T", axis=alt.Axis(tickCount={"interval": "month", "step": 1}), title=""),
y=alt.Y("Price:Q").scale(zero=False),
color=alt.value("crimson"),
)
).add_params(scale_selection).properties(
width=chart_size["width"],
height=chart_size["height"],
)
trading_vol_individual = (
alt.Chart(etf_volumes)
.transform_fold(
etf_volumes.drop(columns="Date").columns.to_list(), as_=["Funds", "Volume"]
)
.mark_line()
.encode(
x=alt.X("Date:T", axis=alt.Axis(tickCount={"interval": "month", "step": 1}), title=""),
y=alt.Y("Volume:Q", title="Trading Volume Individual"),
color="Funds:N",
)
).add_params(scale_selection).properties(
width=chart_size["width"],
height=chart_size["height"],
)
trading_vol_total = (
alt.Chart(etf_volumes)
.transform_fold(
etf_volumes.drop(columns="Date").columns.to_list(), as_=["Funds", "Volume"]
)
.mark_rule()
.encode(
x=alt.X("Date:T", axis=alt.Axis(tickCount={"interval": "month", "step": 1}), title=""),
y=alt.Y("sum(Volume):Q", title="Trading Volume Total"),
color=alt.value("teal"),
)
).add_params(scale_selection).properties(
width=chart_size["width"],
height=chart_size["height"],
)
# Net flow individual
net_flow_individual = (
alt.Chart(etf_flow_individual)
.transform_fold(
etf_flow_individual.drop(columns="Date").columns.to_list(),
as_=["Funds", "Net Flow"],
)
.mark_line()
.encode(
x=alt.X("Date:T", axis=alt.Axis(tickCount={"interval": "month", "step": 1}), title=""),
y=alt.Y("Net Flow:Q", title="Net Flow Individual"),
color="Funds:N",
)
).add_params(scale_selection).properties(
width=chart_size["width"],
height=chart_size["height"],
)
net_flow_total = (
alt.Chart(etf_flow_total)
.mark_rule()
.encode(
x=alt.X("Date:T", axis=alt.Axis(tickCount={"interval": "month", "step": 1}), title=""),
y=alt.Y("Total:Q", title="Net Flow Total"),
color=alt.condition(
alt.datum.Total > 0,
alt.value("seagreen"), # The positive color
alt.value("orangered"), # The negative color
),
)
).add_params(scale_selection).properties(
width=chart_size["width"],
height=chart_size["height"],
)
# Stacking area chart of flow from individual funds
cum_flow_individual = (
alt.Chart(cum_flow_individual)
.transform_fold(
cum_flow_individual.drop(columns="Date").columns.to_list(),
as_=["Funds", "Net Flow"],
)
.mark_area()
.encode(
x=alt.X("Date:T", axis=alt.Axis(tickCount={"interval": "month", "step": 1}), title=""),
y=alt.Y("Net Flow:Q", title="Cumulative Flow Individual"),
color=alt.Color("Funds:N", scale=alt.Scale(scheme="tableau20")),
)
).add_params(scale_selection).properties(
width=chart_size["width"],
height=chart_size["height"],
)
# Area chart for cumulative flow
cum_flow_total = (
alt.Chart(cum_flow_total)
.transform_calculate(
negative="datum.Total < 0",
)
.mark_area()
.encode(
x=alt.X("Date:T", axis=alt.Axis(tickCount={"interval": "month", "step": 1}), title=""),
y=alt.Y("Total:Q", title="Cumulative Flow Total", impute={"value": 0}),
color=alt.Color(
"negative:N", title="Negative Flow", scale=alt.Scale(scheme="set2")
),
)
).add_params(scale_selection).properties(
width=chart_size["width"],
height=chart_size["height"],
)
return SimpleNamespace(
price=price,
trading_vol_individual=trading_vol_individual,
trading_vol_total=trading_vol_total,
net_flow_individual=net_flow_individual,
net_flow_total=net_flow_total,
cum_flow_individual=cum_flow_individual,
cum_flow_total=cum_flow_total,
)
def asset_charts(asset: str, chart_size={"width": "container", "height": 150}):
charts = gen_charts(asset, chart_size)
# Vertical concat the charts in each asset into single column of that asset
all_charts = (
charts.price
& charts.trading_vol_individual
& charts.trading_vol_total
& charts.net_flow_individual
& charts.net_flow_total
& charts.cum_flow_individual
& charts.cum_flow_total
).resolve_scale(
color="independent",
).properties(
title=f"{asset} ETF",
)
return all_charts
if __name__ == "__main__":
# Set page config
st.set_page_config(layout="wide", page_icon="πŸ“ˆ")
# Initialize pygwalker communication
init_streamlit_comm()
dashboard_tab, single_view, flow_tab, volume_tab, price_tab = st.tabs(
[
"Dashboard",
"View Single ETF",
"Explore ETF Flow",
"Explore ETF Volume",
"Explore ETF Asset Price",
]
)
btc = fetch_asset("BTC")
eth = fetch_asset("ETH")
with dashboard_tab:
btc_charts = asset_charts("BTC", chart_size={"width": "container", "height": 150})
eth_charts = asset_charts("ETH", chart_size={"width": "container", "height": 150})
# Display charts
btc_chart_col, eth_chart_col = st.columns(2)
with btc_chart_col:
st.altair_chart(btc_charts, use_container_width=True)
with eth_chart_col:
st.altair_chart(eth_charts, use_container_width=True)
# Display iframes
btc_col, eth_col = st.columns(2)
with btc_col:
iframe(btc.url, height=1200, scrolling=True)
with eth_col:
iframe(eth.url, height=1200, scrolling=True)
with single_view:
asset = st.selectbox(
"Asset to view",
("BTC", "ETH"),
)
charts = asset_charts(asset, chart_size={"width": "container", "height": 300})
st.altair_chart(charts, use_container_width=True)
iframe(fetch_asset(asset).url, height=1200, scrolling=True)
with flow_tab:
btc_flow, eth_flow = btc.etf_flow, eth.etf_flow
btc_flow["Asset"] = "BTC"
eth_flow["Asset"] = "ETH"
df = pd.concat([btc_flow, eth_flow])
df.Date = df.Date.astype(str)
StreamlitRenderer(df).explorer()
with volume_tab:
btc_volume, eth_volume = btc.etf_volumes, eth.etf_volumes
btc_volume["Asset"] = "BTC"
eth_volume["Asset"] = "ETH"
df = pd.concat([btc_volume, eth_volume])
df.Date = df.Date.astype(str)
StreamlitRenderer(df).explorer()
with price_tab:
btc_price, eth_price = btc.price, eth.price
btc_price["Asset"] = "BTC"
eth_price["Asset"] = "ETH"
df = pd.concat([btc_price, eth_price])
df.Date = df.Date.astype(str)
StreamlitRenderer(df).explorer()