File size: 7,566 Bytes
4ab50ad
 
97ae727
 
 
1f4b746
97ae727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ab50ad
97ae727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f4b746
 
 
 
 
 
 
 
 
97ae727
1f4b746
97ae727
 
 
1f4b746
 
 
 
 
 
 
 
 
 
 
 
97ae727
1f4b746
97ae727
 
 
1f4b746
 
 
 
 
 
 
 
 
 
 
 
97ae727
 
1f4b746
 
 
 
 
 
 
 
 
 
 
 
97ae727
1f4b746
97ae727
 
 
 
 
 
1f4b746
 
 
 
 
 
 
 
97ae727
 
1f4b746
 
 
 
97ae727
 
 
 
 
1f4b746
 
 
 
 
 
 
 
 
 
 
 
 
97ae727
1f4b746
 
 
97ae727
1f4b746
97ae727
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import streamlit as st

import pandas as pd
import yfinance as yf

import altair as alt


def clean_etf_data(df):
    """
    Clean ETF data
    """
    # Set date as index
    df.Date = pd.to_datetime(df.Date, dayfirst=True)
    df.set_index("Date", inplace=True)
    # Format index to date without time
    df.index = df.index.normalize().date
    # Format outflow to negative value
    df.replace(to_replace=r"\(([0-9.]+)\)", value=r"-\1", regex=True, inplace=True)

    # Copy original
    df_original = df.copy()

    # Replace '-' with 0
    df.replace("-", 0, inplace=True)

    # Convert from strings to numberic
    df = df.apply(pd.to_numeric)

    return df, df_original


##------------------------- ETF flow --------------------------------------------

# Get Bitcoin spot ETF history
btc_etf_flow = pd.read_html(
    "https://farside.co.uk/?p=1321", attrs={"class": "etf"}, skiprows=[1]
)[0]
# Drop column 'BTC'
# btc_etf_flow.drop(columns = ['BTC'], inplace = True)
# Remove summary lines
btc_etf_flow = btc_etf_flow.iloc[:-4]
# Extract symbols of ETF funds
btc_etf_funds = btc_etf_flow.drop(["Date", "Total"], axis=1).columns

# Get Ethereum spot ETF history
eth_etf_flow = pd.read_html(
    "https://farside.co.uk/ethereum-etf-flow-all-data/",
    attrs={"class": "etf"},
    skiprows=[2, 3],
)[0]
# Drop column index level 2
eth_etf_flow.columns = eth_etf_flow.columns.droplevel(2)
# Extract symbols of ETF funds
eth_etf_funds = eth_etf_flow.drop("Total", axis=1).columns[1:].get_level_values(1)
# Merge multi-index columns
eth_etf_flow.columns = eth_etf_flow.columns.map(" | ".join)
# Name first column "Date"
eth_etf_flow.rename(
    columns={
        "Unnamed: 0_level_0 | Unnamed: 0_level_1": "Date",
        "Total | Unnamed: 10_level_1": "Total",
    },
    inplace=True,
)
# Remove summary lines
eth_etf_flow = eth_etf_flow.iloc[:-1]

btc_etf_flow, btc_etf_flow_original = clean_etf_data(btc_etf_flow)
eth_etf_flow, eth_etf_flow_original = clean_etf_data(eth_etf_flow)

##------------------------- ETF volume -----------------------------------------

# Get BTC ETF daily volume
btc_etf_volumes = pd.DataFrame()
for fund in btc_etf_funds:
    btc_etf_volumes[fund] = yf.download(
        f"{fund}", interval="1d", period="max", start=btc_etf_flow.index[0]
    )["Volume"]

# Format index to date without time
btc_etf_volumes.index = btc_etf_volumes.index.normalize().date

# Get ETH ETF daily volume
eth_etf_volumes = pd.DataFrame()
for fund in eth_etf_funds:
    eth_etf_volumes[fund] = yf.download(
        f"{fund}", interval="1d", period="max", start=eth_etf_flow.index[0]
    )["Volume"]

# Format index to date without time
eth_etf_volumes.index = eth_etf_volumes.index.normalize().date

##------------------------- Asset price --------------------------------------------

# Get BTC price history
btc_price = yf.download(
    "BTC-USD", interval="1d", period="max", start=btc_etf_flow.index[0]
)
btc_price = btc_price.Close
# Format index to date without time
btc_price.index = btc_price.index.normalize().date

# Get ETH price history
eth_price = yf.download(
    "ETH-USD", interval="1d", period="max", start=eth_etf_flow.index[0]
)
eth_price = eth_price.Close
# Format index to date without time
eth_price.index = eth_price.index.normalize().date


if __name__ == "__main__":
    # Set page config
    st.set_page_config(layout="wide", page_icon="πŸ“ˆ")
    # Set page title
    st.title("Crypto ETF Dashboard")

    # Sidebar to choose ETF asset to view
    st.sidebar.title("Crypto ETF Dashboard")
    # Dropdown selection to choose asset (BTC, ETH)
    asset = st.sidebar.selectbox("Choose asset", ("BTC", "ETH"))

    # Display ETF data
    if asset == "BTC":
        st.header("BTC ETF")
        etf_flow = btc_etf_flow
        etf_volumes = btc_etf_volumes
        price = btc_price
    else:
        st.header("ETH ETF")
        etf_flow = eth_etf_flow
        etf_volumes = eth_etf_volumes
        price = eth_price

    etf_flow_individual = etf_flow.drop("Total", axis=1)
    etf_flow_total = etf_flow.Total

    # Section trading volume
    st.subheader(f"{asset} ETF Trading volume")
    trading_vol_fig = (
        alt.Chart(etf_volumes.reset_index())
        .transform_fold(etf_volumes.columns, as_=["Funds", "Volume"])
        .mark_bar()
        .encode(
            x=alt.X("index:T", title="Date"),
            y=alt.Y("Volume:Q", title="Volume"),
            color="Funds:N",
        )
    )
    st.altair_chart(trading_vol_fig, use_container_width=True)

    # Section net flow individual funds
    st.subheader(f"{asset} ETF Net flow individual funds")
    net_flow_individual_fig = (
        alt.Chart(etf_flow_individual.reset_index())
        .transform_fold(
            etf_flow_individual.columns,
            as_=["Funds", "Net Flow"],
        )
        .mark_bar()
        .encode(
            x=alt.X("index:T", title="Date"),
            y=alt.Y("Net Flow:Q", title="Net Flow"),
            color="Funds:N",
        )
    )
    st.altair_chart(net_flow_individual_fig, use_container_width=True)

    # Section net flow total vs asset price
    st.subheader(f"{asset} ETF Net flow total vs asset price")
    net_flow_total_fig = (
        alt.Chart(etf_flow_total.reset_index())
        .mark_bar()
        .encode(
            x=alt.X("index:T", title="Date"),
            y=alt.Y("Total:Q"),
            color=alt.condition(
                alt.datum.Total > 0,
                alt.value("seagreen"),  # The positive color
                alt.value("orangered"),  # The negative color
            ),
        )
    )
    # Line chart of price
    price_fig = (
        alt.Chart(price.reset_index())
        .mark_line()
        .encode(
            x=alt.X("index:T", title="Date"),
            y=alt.Y("Close:Q", title="Price"),
            color=alt.value("crimson"),
        )
    )
    st.altair_chart(
        (net_flow_total_fig + price_fig).resolve_scale(
            y="independent",
        ),
        use_container_width=True,
    )

    # Section cumulative flow individual vs asset price
    st.subheader(f"{asset} ETF Cumulative flow of individual funds vs asset price")
    cum_flow_individual = etf_flow_individual.cumsum()
    # Stacking area chart of flow from individual funds
    cum_flow_individual_net_fig = (
        alt.Chart(cum_flow_individual.reset_index())
        .transform_fold(cum_flow_individual.columns, as_=["Funds", "Net Flow"])
        .mark_area()
        .encode(
            x=alt.X("index:T", title="Date"),
            y=alt.Y("Net Flow:Q", title="Net Flow"),
            color=alt.Color("Funds:N").scale(scheme="tableau20"),
        )
    )
    st.altair_chart(
        (cum_flow_individual_net_fig + price_fig).resolve_scale(y="independent"),
        use_container_width=True,
    )

    # Section cumulative flow total vs asset price
    st.subheader(f"{asset} ETF Cumulative flow total vs asset price")
    cum_flow_total = etf_flow_total.cumsum()
    # Area chart for cumulative flow
    cum_flow_total_fig = (
        alt.Chart(cum_flow_total.reset_index())
        .transform_calculate(
            negative="datum.Total < 0",
        )
        .mark_area()
        .encode(
            x=alt.X("index:T"),
            y=alt.Y("Total:Q", impute={"value": 0}),
            color=alt.Color("negative:N", title="Negative Flow").scale(
                scheme="set2"
            ),
        )
    )
    st.altair_chart(
        (cum_flow_total_fig + price_fig).resolve_scale(
            y="independent",
        ),
        use_container_width=True,
    )