from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() learn = load_learner('model.pkl') categories = ('Dog', 'Cat') def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float, probs))) with gr.Blocks() as demo: image = gr.Image(type="pil") label = gr.Label() examples = gr.Examples(['dog.jpg', 'cat.jpg', 'dunno.jpg'], image) classify_btn = gr.Button("Classify") classify_btn.click(fn=classify_image, inputs=image, outputs=label) # Launch the interface demo.launch(inline=False)