File size: 6,204 Bytes
832ca96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import numpy as np
import json
import shutil
import requests
import re as r
from urllib.request import urlopen
from datetime import datetime
import gradio as gr
import tensorflow as tf
import keras_ocr
import cv2
import csv
import pandas as pd
import huggingface_hub
from huggingface_hub import Repository, upload_file
import scipy.ndimage.interpolation as inter
import easyocr
from datasets import load_dataset, Image
from PIL import Image as PILImage
from paddleocr import PaddleOCR
import pytesseract
import torch
import spaces

# Global Variables
HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_NAME = "image_to_text_ocr"
DATASET_REPO_URL = "https://huggingface.co/ImranzamanML/image_to_text_ocr"
DATA_FILENAME = "ocr_data.csv"
DATA_FILE_PATH = os.path.join("ocr_data", DATA_FILENAME)
DATASET_REPO_ID = "ImranzamanML/image_to_text_ocr"
REPOSITORY_DIR = "data"
LOCAL_DIR = 'data_local'
os.makedirs(LOCAL_DIR, exist_ok=True)

"""
OCR using PaddleOCR
"""
@spaces.GPU
def paddle_ocr_processor(image):
    final_text = ''
    ocr = PaddleOCR(use_gpu=True, lang='en', use_angle_cls=True)
    result = ocr.ocr(image)
    for i in range(len(result[0])):
        text = result[0][i][1][0]
        final_text += ' ' + text
    return final_text

"""
OCR using Keras OCR
"""
@spaces.GPU
def keras_ocr_processor(image):
    output_text = ''
    pipeline = keras_ocr.pipeline.Pipeline()
    images = [keras_ocr.tools.read(image)]
    predictions = pipeline.recognize(images)
    first_prediction = predictions[0]
    for text, box in first_prediction:
        output_text += ' ' + text
    return output_text

"""
OCR using EasyOCR
"""
def convert_to_grayscale(image):
    return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

def apply_thresholding(src):
    return cv2.threshold(src, 127, 255, cv2.THRESH_TOZERO)[1]

@spaces.GPU
def easy_ocr_processor(image):
    gray_image = convert_to_grayscale(image)
    apply_thresholding(gray_image)
    cv2.imwrite('processed_image.png', gray_image)
    reader = easyocr.Reader(['th', 'en'])
    detected_text = reader.readtext('processed_image.png', paragraph="False", detail=0)
    detected_text = ''.join(detected_text)
    return detected_text

"""
Utility Functions
"""
def save_json(data, filepath):
    with open(filepath, 'w+', encoding="utf8") as f:
        json.dump(data, f)

def get_ip_address():
    try:
        response = str(urlopen('http://checkip.dyndns.com/').read())
        return r.compile(r'Address: (\d+\.\d+\.\d+\.\d+)').search(response).group(1)
    except Exception as e:
        print("Error while getting IP address -->", e)
        return ''

def fetch_location(ip_addr):
    try:
        req_data = {"ip": ip_addr, "token": "pkml123"}
        url = "https://demos.pragnakalp.com/get-ip-location"
        headers = {'Content-Type': 'application/json'}
        response = requests.post(url, headers=headers, data=json.dumps(req_data)).json()
        return response
    except Exception as e:
        print("Error while getting location -->", e)
        return {}

def log_ocr_data(method, text_output, input_image):
    print("Logging OCR data...")
    ip_address = get_ip_address()
    location_info = fetch_location(ip_address)
    timestamp = datetime.now().strftime('%Y-%m-%d %H-%M-%S')
    save_dir = os.path.join(LOCAL_DIR, timestamp)
    os.makedirs(save_dir, exist_ok=True)
    
    image_filename = os.path.join(save_dir, 'image.png')
    try:
        PILImage.fromarray(input_image).save(image_filename)
    except Exception:
        raise Exception(f"Failed to save image as file")    

    metadata_file_path = os.path.join(save_dir, 'metadata.jsonl')
    metadata = {
        'id': timestamp,
        'method': method,
        'file_name': 'image.png',
        'generated_text': text_output,
        'ip': ip_address,
        'location': location_info
    }
    save_json(metadata, metadata_file_path)

    repo_image_path = os.path.join(REPOSITORY_DIR, os.path.join(timestamp, 'image.png'))
    _ = upload_file(
        path_or_fileobj=image_filename,
        path_in_repo=repo_image_path,
        repo_id=DATASET_REPO_ID,
        repo_type='dataset',
        token=HF_TOKEN
    )

    repo_json_path = os.path.join(REPOSITORY_DIR, os.path.join(timestamp, 'metadata.jsonl'))
    _ = upload_file(
        path_or_fileobj=metadata_file_path,
        path_in_repo=repo_json_path,
        repo_id=DATASET_REPO_ID,
        repo_type='dataset',
        token=HF_TOKEN
    )

    repo.git_pull()

    url = 'http://pragnakalpdev35.pythonanywhere.com/HF_space_image_to_text'
    payload = {
        'Method': method,
        'text_output': text_output,
        'img': input_image.tolist(),
        'ip_address': ip_address,
        'loc': location_info
    }
    response = requests.post(url, json=payload)
    print("Mail status code:", response.status_code)

    return "***** Logs saved successfully! *****"

"""
OCR Generation
"""
def generate_ocr_text(method, image):
    text_output = ''
    if image.any():
        if method == 'EasyOCR':
            text_output = easy_ocr_processor(image)
        elif method == 'KerasOCR':
            text_output = keras_ocr_processor(image)
        elif method == 'PaddleOCR':
            text_output = paddle_ocr_processor(image)

        try:
            log_ocr_data(method, text_output, image)
        except Exception as e:
            print(e)
        return text_output
    else:
        raise gr.Error("Please upload an image!")

"""
Create user interface for OCR demo
"""
image_input = gr.Image(label="Upload Image")
method_input = gr.Radio(["PaddleOCR", "EasyOCR", "KerasOCR"], value="PaddleOCR", label="Select OCR Method")
output_textbox = gr.Textbox(label="Recognized Text")

demo = gr.Interface(
    fn=generate_ocr_text,
    inputs=[method_input, image_input],
    outputs=output_textbox,
    title="Enhanced OCR Demo",
    description="Choose an OCR method and upload an image to extract text.",
    theme="huggingface",
    css="""
    .gradio-container {background-color: #f5f5f5; font-family: Arial, sans-serif;}
    #method_input {background-color: #FFC107; font-size: 18px; padding: 10px;}
    #output_textbox {font-size: 16px; color: #333;}
    """
)

demo.launch()