Spaces:
Sleeping
Sleeping
File size: 6,204 Bytes
832ca96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
import numpy as np
import json
import shutil
import requests
import re as r
from urllib.request import urlopen
from datetime import datetime
import gradio as gr
import tensorflow as tf
import keras_ocr
import cv2
import csv
import pandas as pd
import huggingface_hub
from huggingface_hub import Repository, upload_file
import scipy.ndimage.interpolation as inter
import easyocr
from datasets import load_dataset, Image
from PIL import Image as PILImage
from paddleocr import PaddleOCR
import pytesseract
import torch
import spaces
# Global Variables
HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_NAME = "image_to_text_ocr"
DATASET_REPO_URL = "https://huggingface.co/ImranzamanML/image_to_text_ocr"
DATA_FILENAME = "ocr_data.csv"
DATA_FILE_PATH = os.path.join("ocr_data", DATA_FILENAME)
DATASET_REPO_ID = "ImranzamanML/image_to_text_ocr"
REPOSITORY_DIR = "data"
LOCAL_DIR = 'data_local'
os.makedirs(LOCAL_DIR, exist_ok=True)
"""
OCR using PaddleOCR
"""
@spaces.GPU
def paddle_ocr_processor(image):
final_text = ''
ocr = PaddleOCR(use_gpu=True, lang='en', use_angle_cls=True)
result = ocr.ocr(image)
for i in range(len(result[0])):
text = result[0][i][1][0]
final_text += ' ' + text
return final_text
"""
OCR using Keras OCR
"""
@spaces.GPU
def keras_ocr_processor(image):
output_text = ''
pipeline = keras_ocr.pipeline.Pipeline()
images = [keras_ocr.tools.read(image)]
predictions = pipeline.recognize(images)
first_prediction = predictions[0]
for text, box in first_prediction:
output_text += ' ' + text
return output_text
"""
OCR using EasyOCR
"""
def convert_to_grayscale(image):
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
def apply_thresholding(src):
return cv2.threshold(src, 127, 255, cv2.THRESH_TOZERO)[1]
@spaces.GPU
def easy_ocr_processor(image):
gray_image = convert_to_grayscale(image)
apply_thresholding(gray_image)
cv2.imwrite('processed_image.png', gray_image)
reader = easyocr.Reader(['th', 'en'])
detected_text = reader.readtext('processed_image.png', paragraph="False", detail=0)
detected_text = ''.join(detected_text)
return detected_text
"""
Utility Functions
"""
def save_json(data, filepath):
with open(filepath, 'w+', encoding="utf8") as f:
json.dump(data, f)
def get_ip_address():
try:
response = str(urlopen('http://checkip.dyndns.com/').read())
return r.compile(r'Address: (\d+\.\d+\.\d+\.\d+)').search(response).group(1)
except Exception as e:
print("Error while getting IP address -->", e)
return ''
def fetch_location(ip_addr):
try:
req_data = {"ip": ip_addr, "token": "pkml123"}
url = "https://demos.pragnakalp.com/get-ip-location"
headers = {'Content-Type': 'application/json'}
response = requests.post(url, headers=headers, data=json.dumps(req_data)).json()
return response
except Exception as e:
print("Error while getting location -->", e)
return {}
def log_ocr_data(method, text_output, input_image):
print("Logging OCR data...")
ip_address = get_ip_address()
location_info = fetch_location(ip_address)
timestamp = datetime.now().strftime('%Y-%m-%d %H-%M-%S')
save_dir = os.path.join(LOCAL_DIR, timestamp)
os.makedirs(save_dir, exist_ok=True)
image_filename = os.path.join(save_dir, 'image.png')
try:
PILImage.fromarray(input_image).save(image_filename)
except Exception:
raise Exception(f"Failed to save image as file")
metadata_file_path = os.path.join(save_dir, 'metadata.jsonl')
metadata = {
'id': timestamp,
'method': method,
'file_name': 'image.png',
'generated_text': text_output,
'ip': ip_address,
'location': location_info
}
save_json(metadata, metadata_file_path)
repo_image_path = os.path.join(REPOSITORY_DIR, os.path.join(timestamp, 'image.png'))
_ = upload_file(
path_or_fileobj=image_filename,
path_in_repo=repo_image_path,
repo_id=DATASET_REPO_ID,
repo_type='dataset',
token=HF_TOKEN
)
repo_json_path = os.path.join(REPOSITORY_DIR, os.path.join(timestamp, 'metadata.jsonl'))
_ = upload_file(
path_or_fileobj=metadata_file_path,
path_in_repo=repo_json_path,
repo_id=DATASET_REPO_ID,
repo_type='dataset',
token=HF_TOKEN
)
repo.git_pull()
url = 'http://pragnakalpdev35.pythonanywhere.com/HF_space_image_to_text'
payload = {
'Method': method,
'text_output': text_output,
'img': input_image.tolist(),
'ip_address': ip_address,
'loc': location_info
}
response = requests.post(url, json=payload)
print("Mail status code:", response.status_code)
return "***** Logs saved successfully! *****"
"""
OCR Generation
"""
def generate_ocr_text(method, image):
text_output = ''
if image.any():
if method == 'EasyOCR':
text_output = easy_ocr_processor(image)
elif method == 'KerasOCR':
text_output = keras_ocr_processor(image)
elif method == 'PaddleOCR':
text_output = paddle_ocr_processor(image)
try:
log_ocr_data(method, text_output, image)
except Exception as e:
print(e)
return text_output
else:
raise gr.Error("Please upload an image!")
"""
Create user interface for OCR demo
"""
image_input = gr.Image(label="Upload Image")
method_input = gr.Radio(["PaddleOCR", "EasyOCR", "KerasOCR"], value="PaddleOCR", label="Select OCR Method")
output_textbox = gr.Textbox(label="Recognized Text")
demo = gr.Interface(
fn=generate_ocr_text,
inputs=[method_input, image_input],
outputs=output_textbox,
title="Enhanced OCR Demo",
description="Choose an OCR method and upload an image to extract text.",
theme="huggingface",
css="""
.gradio-container {background-color: #f5f5f5; font-family: Arial, sans-serif;}
#method_input {background-color: #FFC107; font-size: 18px; padding: 10px;}
#output_textbox {font-size: 16px; color: #333;}
"""
)
demo.launch()
|