Update tasks/audio.py
Browse files- tasks/audio.py +43 -150
tasks/audio.py
CHANGED
@@ -1,196 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
-
import random
|
6 |
-
import os
|
7 |
-
|
8 |
from .utils.evaluation import AudioEvaluationRequest
|
9 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
10 |
-
|
11 |
from dotenv import load_dotenv
|
|
|
12 |
load_dotenv()
|
13 |
|
14 |
router = APIRouter()
|
15 |
-
|
16 |
DESCRIPTION = "Random Baseline"
|
17 |
ROUTE = "/audio"
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
async def evaluate_audio(request: AudioEvaluationRequest):
|
22 |
-
|
23 |
-
#
|
24 |
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
|
25 |
-
|
26 |
-
# Split dataset
|
27 |
-
train_test = dataset["train"]
|
28 |
test_dataset = dataset["test"]
|
29 |
|
30 |
# Start tracking emissions
|
31 |
tracker.start()
|
32 |
tracker.start_task("inference")
|
33 |
|
34 |
-
#--------------------------------------------------------------------------------------------
|
35 |
-
# YOUR MODEL INFERENCE CODE HERE
|
36 |
-
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
37 |
-
#--------------------------------------------------------------------------------------------
|
38 |
-
import tensorflow as tf
|
39 |
-
import tensorflow_hub as hub
|
40 |
-
import librosa
|
41 |
-
import numpy as np
|
42 |
-
from sklearn.model_selection import train_test_split
|
43 |
-
from tensorflow.keras.utils import to_categorical
|
44 |
-
|
45 |
-
# Load YAMNet Model
|
46 |
-
yamnet_model_url = "https://tfhub.dev/google/yamnet/1"
|
47 |
-
yamnet_model = hub.load(yamnet_model_url)
|
48 |
-
|
49 |
-
# Function to extract embeddings from audio
|
50 |
-
def extract_embedding(audio_example):
|
51 |
-
'''Extract YAMNet embeddings from a waveform'''
|
52 |
-
waveform = audio_example["audio"]["array"] # Ensure correct key reference
|
53 |
-
waveform = tf.convert_to_tensor(waveform, dtype=tf.float32)
|
54 |
-
scores, embeddings, spectrogram = yamnet_model(waveform)
|
55 |
-
return {"embedding": embeddings.numpy()}
|
56 |
-
|
57 |
-
# Apply embedding extraction to training data
|
58 |
-
train_embeddings = dataset["train"].map(extract_embedding)
|
59 |
-
|
60 |
-
# Apply embedding extraction to testing data
|
61 |
-
test_embeddings = dataset["test"].map(extract_embedding)
|
62 |
-
|
63 |
-
X_train, y_train = [], []
|
64 |
-
X_test, y_test = [], []
|
65 |
-
|
66 |
-
# Process Training Data
|
67 |
-
for example in train_embeddings:
|
68 |
-
for embedding in example["embedding"]:
|
69 |
-
X_train.append(embedding)
|
70 |
-
y_train.append(example["label"])
|
71 |
-
|
72 |
-
# Process Testing Data
|
73 |
-
for example in test_embeddings:
|
74 |
-
for embedding in example["embedding"]:
|
75 |
-
X_test.append(embedding)
|
76 |
-
y_test.append(example["label"])
|
77 |
-
|
78 |
-
# Convert to NumPy arrays
|
79 |
-
X_train = np.array(X_train)
|
80 |
-
y_train = np.array(y_train)
|
81 |
-
X_test = np.array(X_test)
|
82 |
-
y_test = np.array(y_test)
|
83 |
-
|
84 |
-
# Convert labels to categorical (one-hot encoding)
|
85 |
-
y_train_cat = to_categorical(y_train, num_classes=2)
|
86 |
-
y_test_cat = to_categorical(y_test, num_classes=2)
|
87 |
-
|
88 |
-
print(f"Training samples: {X_train.shape}, Test samples: {X_test.shape}")
|
89 |
-
|
90 |
-
from tensorflow.keras.models import Sequential
|
91 |
-
from tensorflow.keras.layers import Dense, Dropout
|
92 |
-
|
93 |
-
# Define the model
|
94 |
-
model = Sequential([
|
95 |
-
Dense(128, activation='relu', input_shape=(X_train.shape[1],)),
|
96 |
-
Dropout(0.3),
|
97 |
-
Dense(64, activation='relu'),
|
98 |
-
Dropout(0.3),
|
99 |
-
Dense(2, activation='softmax') # 2 classes: chainsaw (0) vs. environment (1)
|
100 |
-
])
|
101 |
-
|
102 |
-
model.summary()
|
103 |
-
|
104 |
-
# Compile the model
|
105 |
-
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
|
106 |
-
|
107 |
-
# Train the model on YAMNet embeddings
|
108 |
-
model.fit(X_train, y_train_cat, epochs=20, batch_size=16, validation_data=(X_test, y_test_cat))
|
109 |
-
|
110 |
-
# Evaluate the model
|
111 |
-
y_pred = model.predict(X_test)
|
112 |
-
y_pred_labels = np.argmax(y_pred, axis=1)
|
113 |
-
|
114 |
-
from sklearn.metrics import accuracy_score
|
115 |
-
accuracy = accuracy_score(y_test, y_pred_labels)
|
116 |
-
print("Transfer Learning Model Accuracy:", accuracy)
|
117 |
-
|
118 |
-
# Predict labels for the test dataset
|
119 |
-
# Run YAMNet inference on the raw audio data
|
120 |
predictions = []
|
121 |
-
|
122 |
for audio_data in test_dataset["audio"]:
|
123 |
# Extract waveform and sampling rate
|
124 |
waveform = audio_data["array"]
|
125 |
sample_rate = audio_data["sampling_rate"]
|
126 |
|
127 |
-
# Resample
|
128 |
if sample_rate != 16000:
|
129 |
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
|
130 |
|
131 |
-
# Convert
|
132 |
waveform = tf.convert_to_tensor(waveform, dtype=tf.float32)
|
|
|
133 |
|
134 |
-
#
|
135 |
-
|
136 |
-
|
137 |
-
# Predict with YAMNet--->model
|
138 |
-
# Get YAMNet embeddings
|
139 |
-
_, embeddings, _ = yamnet_model(waveform) # Using the original yamnet_model for embedding extraction
|
140 |
-
|
141 |
-
# Calculate the mean of the embeddings across the time dimension
|
142 |
-
embeddings = tf.reduce_mean(embeddings, axis=0) # Average across time frames
|
143 |
|
144 |
-
# Reshape embeddings for
|
145 |
-
embeddings = embeddings.
|
146 |
-
embeddings = embeddings.reshape(1, -1) # Reshape to (1, embedding_dimension)
|
147 |
|
148 |
-
#
|
149 |
-
scores =
|
150 |
-
|
151 |
-
# Get predicted class
|
152 |
predicted_class_index = np.argmax(scores)
|
153 |
-
predicted_class_label = predicted_class_index
|
154 |
-
|
155 |
-
# Get the top class name using the predicted label
|
156 |
-
top_class = "chainsaw" if predicted_class_label == 0 else "environment"
|
157 |
-
predictions.append(top_class)
|
158 |
-
|
159 |
-
print("Predictions:", predictions)
|
160 |
-
|
161 |
-
def map_predictions_to_labels(predictions):
|
162 |
-
"""
|
163 |
-
Maps string predictions to numeric labels:
|
164 |
-
- "chainsaw" -> 0
|
165 |
-
- any other class -> 1
|
166 |
-
Args:
|
167 |
-
predictions (list of str): List of class name predictions.
|
168 |
-
Returns:
|
169 |
-
list of int: Mapped numeric labels.
|
170 |
-
"""
|
171 |
-
return [0 if pred == "chainsaw" else 1 for pred in predictions]
|
172 |
|
173 |
# Map string predictions to numeric labels
|
174 |
-
numeric_predictions =
|
175 |
-
|
176 |
-
# Extract true labels (already numeric)
|
177 |
true_labels = test_dataset["label"]
|
178 |
-
|
179 |
-
# Calculate accuracy
|
180 |
accuracy = accuracy_score(true_labels, numeric_predictions)
|
181 |
-
print("Accuracy:", accuracy)
|
182 |
-
|
183 |
-
#--------------------------------------------------------------------------------------------
|
184 |
-
# YOUR MODEL INFERENCE STOPS HERE
|
185 |
-
#--------------------------------------------------------------------------------------------
|
186 |
|
187 |
# Stop tracking emissions
|
188 |
emissions_data = tracker.stop_task()
|
189 |
|
190 |
-
# Prepare results
|
191 |
results = {
|
192 |
-
"username": username,
|
193 |
-
"space_url": space_url,
|
194 |
"submission_timestamp": datetime.now().isoformat(),
|
195 |
"model_description": DESCRIPTION,
|
196 |
"accuracy": float(accuracy),
|
@@ -205,4 +98,4 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
205 |
}
|
206 |
}
|
207 |
|
208 |
-
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import tensorflow_hub as hub
|
3 |
+
import numpy as np
|
4 |
+
import librosa
|
5 |
+
import os
|
6 |
+
import tarfile
|
7 |
+
from tensorflow.keras.models import load_model
|
8 |
from fastapi import APIRouter
|
9 |
from datetime import datetime
|
10 |
from datasets import load_dataset
|
11 |
from sklearn.metrics import accuracy_score
|
|
|
|
|
|
|
12 |
from .utils.evaluation import AudioEvaluationRequest
|
13 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
|
|
14 |
from dotenv import load_dotenv
|
15 |
+
|
16 |
load_dotenv()
|
17 |
|
18 |
router = APIRouter()
|
|
|
19 |
DESCRIPTION = "Random Baseline"
|
20 |
ROUTE = "/audio"
|
21 |
|
22 |
+
# Define paths for local model files
|
23 |
+
YAMNET_TAR_PATH = "./yamnet-tensorflow2-yamnet-v1.tar.gz" # Ensure this is in the correct directory
|
24 |
+
EXTRACT_PATH = "./yamnet_model"
|
25 |
+
CLASSIFIER_PATH = "./audio_model.h5"
|
26 |
+
|
27 |
+
# Extract YAMNet if it is not already extracted
|
28 |
+
if not os.path.exists(EXTRACT_PATH):
|
29 |
+
with tarfile.open(YAMNET_TAR_PATH, "r:gz") as tar:
|
30 |
+
tar.extractall(EXTRACT_PATH)
|
31 |
+
|
32 |
+
# Load YAMNet
|
33 |
+
yamnet = hub.load(EXTRACT_PATH)
|
34 |
+
|
35 |
+
# Load trained classifier
|
36 |
+
audio_model = load_model(CLASSIFIER_PATH)
|
37 |
+
|
38 |
+
|
39 |
+
@router.post(ROUTE, tags=["Audio Task"], description=DESCRIPTION)
|
40 |
async def evaluate_audio(request: AudioEvaluationRequest):
|
41 |
+
"""Inference function to classify audio samples using a pre-trained model."""
|
42 |
+
# Load dataset
|
43 |
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
|
|
|
|
|
|
|
44 |
test_dataset = dataset["test"]
|
45 |
|
46 |
# Start tracking emissions
|
47 |
tracker.start()
|
48 |
tracker.start_task("inference")
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
predictions = []
|
|
|
51 |
for audio_data in test_dataset["audio"]:
|
52 |
# Extract waveform and sampling rate
|
53 |
waveform = audio_data["array"]
|
54 |
sample_rate = audio_data["sampling_rate"]
|
55 |
|
56 |
+
# Resample if needed
|
57 |
if sample_rate != 16000:
|
58 |
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
|
59 |
|
60 |
+
# Convert to tensor
|
61 |
waveform = tf.convert_to_tensor(waveform, dtype=tf.float32)
|
62 |
+
waveform = tf.squeeze(waveform) # Ensure waveform is 1D
|
63 |
|
64 |
+
# Extract embeddings from YAMNet
|
65 |
+
_, embeddings, _ = yamnet(waveform)
|
66 |
+
embeddings = tf.reduce_mean(embeddings, axis=0).numpy() # Average over time
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
# Reshape embeddings for classifier input
|
69 |
+
embeddings = embeddings.reshape(1, -1)
|
|
|
70 |
|
71 |
+
# Predict using the trained classifier
|
72 |
+
scores = audio_model.predict(embeddings)
|
|
|
|
|
73 |
predicted_class_index = np.argmax(scores)
|
74 |
+
predicted_class_label = "chainsaw" if predicted_class_index == 0 else "environment"
|
75 |
+
predictions.append(predicted_class_label)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
# Map string predictions to numeric labels
|
78 |
+
numeric_predictions = [0 if pred == "chainsaw" else 1 for pred in predictions]
|
|
|
|
|
79 |
true_labels = test_dataset["label"]
|
|
|
|
|
80 |
accuracy = accuracy_score(true_labels, numeric_predictions)
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
# Stop tracking emissions
|
83 |
emissions_data = tracker.stop_task()
|
84 |
|
85 |
+
# Prepare results
|
86 |
results = {
|
|
|
|
|
87 |
"submission_timestamp": datetime.now().isoformat(),
|
88 |
"model_description": DESCRIPTION,
|
89 |
"accuracy": float(accuracy),
|
|
|
98 |
}
|
99 |
}
|
100 |
|
101 |
+
return results
|