Spaces:
Sleeping
Sleeping
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from functools import partial | |
from pathlib import Path | |
import urllib.request | |
import torch | |
from .modeling import ( | |
ImageEncoderViT, | |
MaskDecoder, | |
PromptEncoder, | |
Sam, | |
TwoWayTransformer, | |
) | |
from .modeling.image_encoder_swin import SwinTransformer | |
from monai.utils import ensure_tuple_rep, optional_import | |
def build_sam_vit_h(checkpoint=None, image_size=1024): | |
return _build_sam( | |
encoder_embed_dim=1280, | |
encoder_depth=32, | |
encoder_num_heads=16, | |
encoder_global_attn_indexes=[7, 15, 23, 31], | |
checkpoint=checkpoint, | |
image_size=image_size, | |
) | |
build_sam = build_sam_vit_h | |
def build_sam_vit_l(checkpoint=None, image_size=1024): | |
return _build_sam( | |
encoder_embed_dim=1024, | |
encoder_depth=24, | |
encoder_num_heads=16, | |
encoder_global_attn_indexes=[5, 11, 17, 23], | |
checkpoint=checkpoint, | |
image_size=image_size, | |
) | |
def build_sam_vit_b(checkpoint=None, image_size=1024): | |
return _build_sam( | |
encoder_embed_dim=768, | |
encoder_depth=12, | |
encoder_num_heads=12, | |
encoder_global_attn_indexes=[2, 5, 8, 11], | |
checkpoint=checkpoint, | |
image_size=image_size, | |
) | |
""" | |
Examples:: | |
# for 3D single channel input with size (96,96,96), 4-channel output and feature size of 48. | |
>>> net = SwinUNETR(img_size=(96,96,96), in_channels=1, out_channels=4, feature_size=48) | |
# for 3D 4-channel input with size (128,128,128), 3-channel output and (2,4,2,2) layers in each stage. | |
>>> net = SwinUNETR(img_size=(128,128,128), in_channels=4, out_channels=3, depths=(2,4,2,2)) | |
# for 2D single channel input with size (96,96), 2-channel output and gradient checkpointing. | |
>>> net = SwinUNETR(img_size=(96,96), in_channels=3, out_channels=2, use_checkpoint=True, spatial_dims=2) | |
""" | |
def build_sam_vit_swin(checkpoint=None, image_size=96): | |
print('==> build_sam_vit_swin') | |
return _build_sam( | |
encoder_embed_dim=48, | |
encoder_depth=12, | |
encoder_num_heads=12, | |
encoder_global_attn_indexes=[2, 5, 8, 11], | |
checkpoint=checkpoint, | |
image_size=image_size, | |
) | |
sam_model_registry = { | |
"default": build_sam_vit_h, | |
"vit_h": build_sam_vit_h, | |
"vit_l": build_sam_vit_l, | |
"vit_b": build_sam_vit_b, | |
"swin_vit": build_sam_vit_swin, | |
} | |
def _build_sam( | |
encoder_embed_dim, | |
encoder_depth, | |
encoder_num_heads, | |
encoder_global_attn_indexes, | |
checkpoint=None, | |
image_size=None, | |
spatial_dims=3, | |
): | |
prompt_embed_dim = 768 | |
patch_size = ensure_tuple_rep(2, spatial_dims) | |
window_size = ensure_tuple_rep(7, spatial_dims) | |
image_embedding_size = [size // 32 for size in image_size] | |
sam = Sam( | |
image_encoder=SwinTransformer( | |
in_chans=1, | |
embed_dim=encoder_embed_dim, | |
window_size=window_size, | |
patch_size=patch_size, | |
depths=(2, 2, 6, 2), #(2, 2, 6, 2), | |
num_heads=(3, 6, 12, 24), | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
spatial_dims=spatial_dims, | |
), | |
prompt_encoder=PromptEncoder( | |
embed_dim=prompt_embed_dim, | |
image_embedding_size=image_embedding_size, | |
input_image_size=image_size, | |
mask_in_chans=16, | |
), | |
mask_decoder=MaskDecoder( | |
num_multimask_outputs=3, | |
transformer=TwoWayTransformer( | |
depth=2, | |
embedding_dim=prompt_embed_dim, | |
mlp_dim=2048, | |
num_heads=8, | |
), | |
transformer_dim=prompt_embed_dim, | |
iou_head_depth=3, | |
iou_head_hidden_dim=256, | |
), | |
pixel_mean=[123.675, 116.28, 103.53], | |
pixel_std=[58.395, 57.12, 57.375], | |
) | |
sam.eval() | |
if checkpoint is not None: | |
checkpoint = Path(checkpoint) | |
if checkpoint.name == "sam_vit_b_01ec64.pth" and not checkpoint.exists(): | |
cmd = input("Download sam_vit_b_01ec64.pth from facebook AI? [y]/n: ") | |
if len(cmd) == 0 or cmd.lower() == 'y': | |
checkpoint.parent.mkdir(parents=True, exist_ok=True) | |
print("Downloading SAM ViT-B checkpoint...") | |
urllib.request.urlretrieve( | |
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth", | |
checkpoint, | |
) | |
print(checkpoint.name, " is downloaded!") | |
elif checkpoint.name == "sam_vit_h_4b8939.pth" and not checkpoint.exists(): | |
cmd = input("Download sam_vit_h_4b8939.pth from facebook AI? [y]/n: ") | |
if len(cmd) == 0 or cmd.lower() == 'y': | |
checkpoint.parent.mkdir(parents=True, exist_ok=True) | |
print("Downloading SAM ViT-H checkpoint...") | |
urllib.request.urlretrieve( | |
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", | |
checkpoint, | |
) | |
print(checkpoint.name, " is downloaded!") | |
elif checkpoint.name == "sam_vit_l_0b3195.pth" and not checkpoint.exists(): | |
cmd = input("Download sam_vit_l_0b3195.pth from facebook AI? [y]/n: ") | |
if len(cmd) == 0 or cmd.lower() == 'y': | |
checkpoint.parent.mkdir(parents=True, exist_ok=True) | |
print("Downloading SAM ViT-L checkpoint...") | |
urllib.request.urlretrieve( | |
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", | |
checkpoint, | |
) | |
print(checkpoint.name, " is downloaded!") | |
if checkpoint is not None: | |
with open(checkpoint, "rb") as f: | |
state_dict = torch.load(f) | |
sam.load_state_dict(state_dict) | |
return sam | |