vkt1414
commited on
Commit
·
1a87ae9
1
Parent(s):
e3c19c0
allow user to pick any of the 28 radiomics features
Browse files- filter_data_app.py +64 -20
filter_data_app.py
CHANGED
|
@@ -14,7 +14,7 @@ st.set_page_config(layout="wide")
|
|
| 14 |
LOCAL_PARQUET_FILE = 'qual-checks-and-quant-values.parquet'
|
| 15 |
|
| 16 |
@st.cache_data
|
| 17 |
-
def load_data():
|
| 18 |
cols = [
|
| 19 |
'PatientID',
|
| 20 |
'StudyInstanceUID',
|
|
@@ -25,7 +25,7 @@ def load_data():
|
|
| 25 |
'laterality_check',
|
| 26 |
'series_with_vertabra_on_every_slice',
|
| 27 |
'connected_volumes',
|
| 28 |
-
|
| 29 |
]
|
| 30 |
df = pl.read_parquet(LOCAL_PARQUET_FILE, columns=cols)
|
| 31 |
df = df.with_columns([
|
|
@@ -39,11 +39,15 @@ def load_data():
|
|
| 39 |
# Function to filter data based on user input
|
| 40 |
def filter_data(df, filters):
|
| 41 |
for col, value in filters.items():
|
| 42 |
-
if value is not None:
|
| 43 |
if col == 'connected_volumes' and value:
|
| 44 |
df = df.filter((pl.col(col) <= value) & (pl.col(col).is_not_null()))
|
| 45 |
else:
|
| 46 |
df = df.filter(pl.col(col) == value)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
return df
|
| 48 |
|
| 49 |
# Function to create an UpSet plot for failed checks
|
|
@@ -75,10 +79,10 @@ def create_upset_plot_passes(df):
|
|
| 75 |
st.pyplot(fig)
|
| 76 |
|
| 77 |
# Function to calculate standard deviation of volumes within a patient
|
| 78 |
-
def calculate_std_dev(df):
|
| 79 |
df=df.to_pandas()
|
| 80 |
# Group by 'PatientID' and calculate the standard deviation of 'Volume from Voxel Summation'
|
| 81 |
-
std_dev_df = df.groupby(['PatientID','bodyPart'])[
|
| 82 |
return std_dev_df
|
| 83 |
|
| 84 |
# Main function to run the Streamlit app
|
|
@@ -90,7 +94,7 @@ def main():
|
|
| 90 |
page = st.sidebar.selectbox("Choose a page", ["Summary", "UpSet Plots"])
|
| 91 |
|
| 92 |
# Load the data
|
| 93 |
-
df = load_data()
|
| 94 |
|
| 95 |
if page == "UpSet Plots":
|
| 96 |
with st.sidebar:
|
|
@@ -104,7 +108,8 @@ def main():
|
|
| 104 |
'laterality_check': None,
|
| 105 |
'series_with_vertabra_on_every_slice': None,
|
| 106 |
'connected_volumes': None,
|
| 107 |
-
'laterality': None
|
|
|
|
| 108 |
}
|
| 109 |
|
| 110 |
filters = st.session_state.filters
|
|
@@ -116,7 +121,8 @@ def main():
|
|
| 116 |
'laterality_check': None,
|
| 117 |
'series_with_vertabra_on_every_slice': None,
|
| 118 |
'connected_volumes': None,
|
| 119 |
-
'laterality': None
|
|
|
|
| 120 |
})
|
| 121 |
st.session_state.filters = filters
|
| 122 |
|
|
@@ -124,6 +130,49 @@ def main():
|
|
| 124 |
filters[filter_name] = value
|
| 125 |
st.session_state.filters = filters
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
# Body part filter
|
| 128 |
body_part_options = sorted(df['bodyPart'].unique().to_list())
|
| 129 |
body_part = st.selectbox("Body Part", options=body_part_options, key='bodyPart', on_change=reset_filters)
|
|
@@ -173,13 +222,6 @@ def main():
|
|
| 173 |
on_change=lambda: apply_filter('series_with_vertabra_on_every_slice', st.session_state.series_with_vertabra_on_every_slice)
|
| 174 |
)
|
| 175 |
|
| 176 |
-
# connected_volumes = st.selectbox(
|
| 177 |
-
# "Connected Volumes (<= value)",
|
| 178 |
-
# options=connected_volumes_options,
|
| 179 |
-
# index=connected_volumes_options.index(filters['connected_volumes']) if filters['connected_volumes'] else 0,
|
| 180 |
-
# key='connected_volumes',
|
| 181 |
-
# on_change=lambda: apply_filter('connected_volumes', st.session_state.connected_volumes)
|
| 182 |
-
# )
|
| 183 |
connected_volumes = st.selectbox(
|
| 184 |
"Connected Volumes (<= value)",
|
| 185 |
options=[None] + connected_volumes_options,
|
|
@@ -258,14 +300,14 @@ def main():
|
|
| 258 |
import pandas as pd
|
| 259 |
|
| 260 |
# Assuming calculate_std_dev returns a Series
|
| 261 |
-
std_dev_before_filtering = calculate_std_dev(body_part_df)
|
| 262 |
-
std_dev_after_filtering = calculate_std_dev(filtered_df)
|
| 263 |
|
| 264 |
# Convert Series to DataFrame and add 'Filtering' column
|
| 265 |
-
std_dev_before_filtering = std_dev_before_filtering.reset_index().rename(columns={0:
|
| 266 |
std_dev_before_filtering['Filtering'] = 'Before Filtering'
|
| 267 |
|
| 268 |
-
std_dev_after_filtering = std_dev_after_filtering.reset_index().rename(columns={0:
|
| 269 |
std_dev_after_filtering['Filtering'] = 'After Filtering'
|
| 270 |
|
| 271 |
# Combine the dataframes for easier plotting
|
|
@@ -278,9 +320,11 @@ def main():
|
|
| 278 |
st.header("Violin Plots for Standard Deviation of Volumes")
|
| 279 |
st.write("This plot shows the distribution of standard deviation of volumes within a patient.")
|
| 280 |
fig2, ax = plt.subplots()
|
| 281 |
-
sns.violinplot(x='Filtering', y=
|
| 282 |
ax.set_ylabel("Standard Deviation of Volumes")
|
| 283 |
st.pyplot(fig2)
|
|
|
|
|
|
|
| 284 |
|
| 285 |
|
| 286 |
# Define the pages
|
|
|
|
| 14 |
LOCAL_PARQUET_FILE = 'qual-checks-and-quant-values.parquet'
|
| 15 |
|
| 16 |
@st.cache_data
|
| 17 |
+
def load_data(radiomics_feature='Volume from Voxel Summation'):
|
| 18 |
cols = [
|
| 19 |
'PatientID',
|
| 20 |
'StudyInstanceUID',
|
|
|
|
| 25 |
'laterality_check',
|
| 26 |
'series_with_vertabra_on_every_slice',
|
| 27 |
'connected_volumes',
|
| 28 |
+
radiomics_feature # Include the selected radiomics feature column
|
| 29 |
]
|
| 30 |
df = pl.read_parquet(LOCAL_PARQUET_FILE, columns=cols)
|
| 31 |
df = df.with_columns([
|
|
|
|
| 39 |
# Function to filter data based on user input
|
| 40 |
def filter_data(df, filters):
|
| 41 |
for col, value in filters.items():
|
| 42 |
+
if value is not None and col != 'radiomics_feature': # Exclude radiomics_feature from filtering
|
| 43 |
if col == 'connected_volumes' and value:
|
| 44 |
df = df.filter((pl.col(col) <= value) & (pl.col(col).is_not_null()))
|
| 45 |
else:
|
| 46 |
df = df.filter(pl.col(col) == value)
|
| 47 |
+
# Filter based on radiomics feature
|
| 48 |
+
radiomics_feature = filters.get('radiomics_feature')
|
| 49 |
+
if radiomics_feature:
|
| 50 |
+
df = df.filter(pl.col(radiomics_feature) is not None) # Filter where the radiomics feature is not None
|
| 51 |
return df
|
| 52 |
|
| 53 |
# Function to create an UpSet plot for failed checks
|
|
|
|
| 79 |
st.pyplot(fig)
|
| 80 |
|
| 81 |
# Function to calculate standard deviation of volumes within a patient
|
| 82 |
+
def calculate_std_dev(df,radiomics_feature):
|
| 83 |
df=df.to_pandas()
|
| 84 |
# Group by 'PatientID' and calculate the standard deviation of 'Volume from Voxel Summation'
|
| 85 |
+
std_dev_df = df.groupby(['PatientID','bodyPart'])[radiomics_feature].std()
|
| 86 |
return std_dev_df
|
| 87 |
|
| 88 |
# Main function to run the Streamlit app
|
|
|
|
| 94 |
page = st.sidebar.selectbox("Choose a page", ["Summary", "UpSet Plots"])
|
| 95 |
|
| 96 |
# Load the data
|
| 97 |
+
#df = load_data()
|
| 98 |
|
| 99 |
if page == "UpSet Plots":
|
| 100 |
with st.sidebar:
|
|
|
|
| 108 |
'laterality_check': None,
|
| 109 |
'series_with_vertabra_on_every_slice': None,
|
| 110 |
'connected_volumes': None,
|
| 111 |
+
'laterality': None,
|
| 112 |
+
'radiomics_feature': 'Volume from Voxel Summation' # Default radiomics feature
|
| 113 |
}
|
| 114 |
|
| 115 |
filters = st.session_state.filters
|
|
|
|
| 121 |
'laterality_check': None,
|
| 122 |
'series_with_vertabra_on_every_slice': None,
|
| 123 |
'connected_volumes': None,
|
| 124 |
+
'laterality': None,
|
| 125 |
+
'radiomics_feature': 'Volume from Voxel Summation'
|
| 126 |
})
|
| 127 |
st.session_state.filters = filters
|
| 128 |
|
|
|
|
| 130 |
filters[filter_name] = value
|
| 131 |
st.session_state.filters = filters
|
| 132 |
|
| 133 |
+
|
| 134 |
+
# Radiomics feature selection
|
| 135 |
+
radiomics_feature_options = [
|
| 136 |
+
'Volume from Voxel Summation', # Default option
|
| 137 |
+
'10th percentile',
|
| 138 |
+
'90th percentile',
|
| 139 |
+
'Elongation',
|
| 140 |
+
'Energy',
|
| 141 |
+
'Flatness',
|
| 142 |
+
'Intensity Histogram Entropy',
|
| 143 |
+
'Intensity histogram uniformity',
|
| 144 |
+
'Interquartile range',
|
| 145 |
+
'Kurtosis',
|
| 146 |
+
'Least Axis in 3D Length',
|
| 147 |
+
'Major Axis in 3D Length',
|
| 148 |
+
'Maximum 3D Diameter of a Mesh',
|
| 149 |
+
'Maximum grey level',
|
| 150 |
+
'Mean',
|
| 151 |
+
'Mean absolute deviation',
|
| 152 |
+
'Median',
|
| 153 |
+
'Minimum grey level',
|
| 154 |
+
'Minor Axis in 3D Length',
|
| 155 |
+
'Range',
|
| 156 |
+
'Robust mean absolute deviation',
|
| 157 |
+
'Root mean square',
|
| 158 |
+
'Skewness',
|
| 159 |
+
'Sphericity',
|
| 160 |
+
'Surface Area of Mesh',
|
| 161 |
+
'Surface to Volume Ratio',
|
| 162 |
+
'Variance',
|
| 163 |
+
'Volume from Voxel Summation',
|
| 164 |
+
'Volume of Mesh'
|
| 165 |
+
]
|
| 166 |
+
radiomics_feature = st.selectbox(
|
| 167 |
+
"Radiomics Feature",
|
| 168 |
+
options=radiomics_feature_options,
|
| 169 |
+
index=radiomics_feature_options.index(filters['radiomics_feature']) if filters['radiomics_feature'] else 0,
|
| 170 |
+
key='radiomics_feature',
|
| 171 |
+
on_change=lambda: apply_filter('radiomics_feature', st.session_state.radiomics_feature)
|
| 172 |
+
)
|
| 173 |
+
df = load_data(radiomics_feature=radiomics_feature)
|
| 174 |
+
filters['radiomics_feature'] = radiomics_feature
|
| 175 |
+
|
| 176 |
# Body part filter
|
| 177 |
body_part_options = sorted(df['bodyPart'].unique().to_list())
|
| 178 |
body_part = st.selectbox("Body Part", options=body_part_options, key='bodyPart', on_change=reset_filters)
|
|
|
|
| 222 |
on_change=lambda: apply_filter('series_with_vertabra_on_every_slice', st.session_state.series_with_vertabra_on_every_slice)
|
| 223 |
)
|
| 224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
connected_volumes = st.selectbox(
|
| 226 |
"Connected Volumes (<= value)",
|
| 227 |
options=[None] + connected_volumes_options,
|
|
|
|
| 300 |
import pandas as pd
|
| 301 |
|
| 302 |
# Assuming calculate_std_dev returns a Series
|
| 303 |
+
std_dev_before_filtering = calculate_std_dev(body_part_df, radiomics_feature)
|
| 304 |
+
std_dev_after_filtering = calculate_std_dev(filtered_df, radiomics_feature)
|
| 305 |
|
| 306 |
# Convert Series to DataFrame and add 'Filtering' column
|
| 307 |
+
std_dev_before_filtering = std_dev_before_filtering.reset_index().rename(columns={0: radiomics_feature})
|
| 308 |
std_dev_before_filtering['Filtering'] = 'Before Filtering'
|
| 309 |
|
| 310 |
+
std_dev_after_filtering = std_dev_after_filtering.reset_index().rename(columns={0: radiomics_feature})
|
| 311 |
std_dev_after_filtering['Filtering'] = 'After Filtering'
|
| 312 |
|
| 313 |
# Combine the dataframes for easier plotting
|
|
|
|
| 320 |
st.header("Violin Plots for Standard Deviation of Volumes")
|
| 321 |
st.write("This plot shows the distribution of standard deviation of volumes within a patient.")
|
| 322 |
fig2, ax = plt.subplots()
|
| 323 |
+
sns.violinplot(x='Filtering', y=radiomics_feature, data=combined_df, ax=ax)
|
| 324 |
ax.set_ylabel("Standard Deviation of Volumes")
|
| 325 |
st.pyplot(fig2)
|
| 326 |
+
body_part_df
|
| 327 |
+
filtered_df
|
| 328 |
|
| 329 |
|
| 330 |
# Define the pages
|