Spaces:
Sleeping
Sleeping
File size: 5,443 Bytes
c03e3f1 8fb3f43 c03e3f1 d289dee d85fa3c c03e3f1 71e05d9 c03e3f1 54e184f c03e3f1 a1c1394 c03e3f1 5e0f846 9a26856 c03e3f1 b2e3a42 a0cc675 c03e3f1 07463bb c03e3f1 a1c1394 73c2ebf e4f1a57 73c2ebf c03e3f1 db008a4 73c2ebf c03e3f1 73c2ebf c03e3f1 c893e79 c03e3f1 c893e79 c03e3f1 c893e79 c03e3f1 c893e79 c03e3f1 ce99494 c03e3f1 f1eff82 00b549c c03e3f1 cf194d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# -*- coding: utf-8 -*-
"""bg_removersarvm.ipynbdfdfdfldfdfd
Automatically generated by Colaboratory.dsds
fdfdfd
Original file is located at
https://colab.research.google.com/drive/17ZfqfkhZV5xSwXdHblThSQM_Yna-0J22d
"""
import cv2
import gradio as gr
import os
import functools
from PIL import Image
from rembg import remove
from io import BytesIO
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import gdown
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
import requests
os.system("git config --global --unset https.proxy")
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")
# project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
#Helpers
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Download official weights
if not os.path.exists("saved_models"):
os.mkdir("saved_models")
os.system("mv isnet.pth saved_models/")
class GOSNormalize(object):
'''
Normalize the Image using torch.transforms fdf
'''
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self,image):
image = normalize(image,self.mean,self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
@functools.lru_cache()
def get_url_im(url):
user_agent = {'User-agent': 'gradio-app'}
response = requests.get(url, headers=user_agent)
return BytesIO(response.content)
def load_image(im_path, hypar):
im_path = get_url_im(im_path)
im = Image.open(im_path)
im = im.convert("RGB") # Convert image to RGB
im, im_shp = im_preprocess(np.array(im), hypar["cache_size"])
im = torch.divide(im, 255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0)
def build_model(hypar,device):
net = hypar["model"]#GOSNETINC(3,1)
# convert to half precision
if(hypar["model_digit"]=="half"):
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if(hypar["restore_model"]!=""):
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
'''
Given an Image, predict the mask
'''
net.eval()
if(hypar["model_digit"]=="full"):
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable
ds_val = net(inputs_val_v)[0] # list of 6 results
pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction
## recover the prediction spatial size to the orignal image size
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val-mi)/(ma-mi) # max = 1
if device == 'cuda': torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need
# Set Parameters
hypar = {} # paramters for inferencing
hypar["model_path"] ="./saved_models" ## load trained weights from this path
hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights
hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision
## choose floating point accuracy --
hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
hypar["seed"] = 0
hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size
## data augmentation parameters ---
hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
hypar["model"] = ISNetDIS()
# Build Model
net = build_model(hypar, device)
def inference(image):
image_path = image
image_tensor, orig_size = load_image(image_path, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(get_url_im(image)).convert("RGBA")
imrgba2 = remove(im_rgb.copy(), 210)
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
return im_rgba, imrgba2, im_rgba
title = "Bg remover for SarvM catalog"
description = "Bg remover for SarvM catalog"
article = "<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' alt='visitor badge'></center></div>"
interface = gr.Interface(
fn=inference,
inputs=gr.Textbox(label="Text or Image URL", interactive=True),
outputs=["image","image","image"],
title=title,
description=description,
article=article,
allow_flagging='never',
cache_examples=False,
).queue().launch(show_error=True, share = True) |