File size: 5,443 Bytes
c03e3f1
8fb3f43
c03e3f1
d289dee
d85fa3c
c03e3f1
71e05d9
c03e3f1
 
54e184f
c03e3f1
 
a1c1394
c03e3f1
5e0f846
9a26856
c03e3f1
 
 
 
 
 
 
 
 
b2e3a42
a0cc675
c03e3f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07463bb
c03e3f1
 
 
 
 
 
 
 
 
 
 
a1c1394
 
73c2ebf
e4f1a57
73c2ebf
 
c03e3f1
 
db008a4
73c2ebf
 
 
 
c03e3f1
73c2ebf
c03e3f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c893e79
 
 
c03e3f1
c893e79
 
 
c03e3f1
c893e79
 
c03e3f1
c893e79
c03e3f1
 
ce99494
 
c03e3f1
 
 
 
f1eff82
00b549c
c03e3f1
 
 
 
 
cf194d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# -*- coding: utf-8 -*-
"""bg_removersarvm.ipynbdfdfdfldfdfd

Automatically generated by Colaboratory.dsds
fdfdfd
Original file is located at
    https://colab.research.google.com/drive/17ZfqfkhZV5xSwXdHblThSQM_Yna-0J22d
"""

import cv2
import gradio as gr
import os
import functools
from PIL import Image
from rembg import remove 
from io import BytesIO
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import gdown
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
import requests
os.system("git config --global --unset https.proxy")
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")

# project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *

#Helpers
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Download official weights
if not os.path.exists("saved_models"):
    os.mkdir("saved_models")
    os.system("mv isnet.pth saved_models/")

class GOSNormalize(object):
    '''
    Normalize the Image using torch.transforms fdf
    '''
    def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
        self.mean = mean
        self.std = std

    def __call__(self,image):
        image = normalize(image,self.mean,self.std)
        return image


transform =  transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])

@functools.lru_cache()
def get_url_im(url):
    user_agent = {'User-agent': 'gradio-app'}
    response = requests.get(url, headers=user_agent)
    return BytesIO(response.content)

def load_image(im_path, hypar):
    im_path = get_url_im(im_path)
    im = Image.open(im_path)
    im = im.convert("RGB")  # Convert image to RGB
    im, im_shp = im_preprocess(np.array(im), hypar["cache_size"])
    im = torch.divide(im, 255.0)
    shape = torch.from_numpy(np.array(im_shp))
    return transform(im).unsqueeze(0), shape.unsqueeze(0)


def build_model(hypar,device):
    net = hypar["model"]#GOSNETINC(3,1)

    # convert to half precision
    if(hypar["model_digit"]=="half"):
        net.half()
        for layer in net.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.float()

    net.to(device)

    if(hypar["restore_model"]!=""):
        net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
        net.to(device)
    net.eval()
    return net


def predict(net,  inputs_val, shapes_val, hypar, device):
    '''
    Given an Image, predict the mask
    '''
    net.eval()

    if(hypar["model_digit"]=="full"):
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)


    inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable

    ds_val = net(inputs_val_v)[0] # list of 6 results

    pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W    # we want the first one which is the most accurate prediction

    ## recover the prediction spatial size to the orignal image size
    pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))

    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val-mi)/(ma-mi) # max = 1

    if device == 'cuda': torch.cuda.empty_cache()
    return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need

# Set Parameters
hypar = {} # paramters for inferencing


hypar["model_path"] ="./saved_models" ## load trained weights from this path
hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights
hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision

##  choose floating point accuracy --
hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
hypar["seed"] = 0

hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size

## data augmentation parameters ---
hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation

hypar["model"] = ISNetDIS()

 # Build Model
net = build_model(hypar, device)


def inference(image):
    image_path = image
    image_tensor, orig_size = load_image(image_path, hypar)
    mask = predict(net, image_tensor, orig_size, hypar, device)

    pil_mask = Image.fromarray(mask).convert('L')
    im_rgb = Image.open(get_url_im(image)).convert("RGBA")
    imrgba2 = remove(im_rgb.copy(), 210)

    im_rgba = im_rgb.copy()
    im_rgba.putalpha(pil_mask)

    return im_rgba, imrgba2, im_rgba


title = "Bg remover for SarvM catalog"
description = "Bg remover for SarvM catalog"
article = "<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' alt='visitor badge'></center></div>"

interface = gr.Interface(
    fn=inference,
    inputs=gr.Textbox(label="Text or Image URL", interactive=True),
    outputs=["image","image","image"],
    title=title,
    description=description,
    article=article,
    allow_flagging='never',
    cache_examples=False,
    ).queue().launch(show_error=True, share = True)