Spaces:
Running
Running
import streamlit as st | |
from gradio_client import Client | |
# Constants | |
TITLE = "Llama2 70B Chatbot" | |
DESCRIPTION = """ | |
This Space demonstrates model [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta, | |
a Llama 2 model with 70B parameters fine-tuned for chat instructions. | |
""" | |
# Initialize client | |
client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/") | |
# Prediction function | |
def predict(message, system_prompt="", temperature=0.9, max_new_tokens=4096): | |
return client.predict( | |
message, # str in 'Message' Textbox component | |
system_prompt, # str in 'Optional system prompt' Textbox component | |
temperature, # int | float (numeric value between 0.0 and 1.0) | |
max_new_tokens, # int | float (numeric value between 0 and 4096) | |
0.3, # int | float (numeric value between 0.0 and 1) | |
1, # int | float (numeric value between 1.0 and 2.0) | |
api_name="/chat" | |
) | |
# Streamlit UI | |
st.title(TITLE) | |
st.write(DESCRIPTION) | |
# Input fields | |
message = st.text_area("Enter your message:", "") | |
system_prompt = st.text_area("Optional system prompt:", "") | |
temperature = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05) | |
max_new_tokens = st.slider("Max new tokens", min_value=0, max_value=4096, value=4096, step=64) | |
if st.button("Predict"): | |
response = predict(message, system_prompt, temperature, max_new_tokens) | |
st.write("Response:", response) | |