Spaces:
Sleeping
Sleeping
File size: 7,746 Bytes
ec74f30 df25732 6ba2996 72abfd9 1b279d5 a10bc68 c57cd9a 87ae702 1b279d5 c57cd9a 1b279d5 c57cd9a df25732 72abfd9 6ba2996 ec74f30 6ba2996 72abfd9 1b279d5 df25732 a10bc68 1b279d5 df25732 a10bc68 1b279d5 c57cd9a a10bc68 891f3b9 a10bc68 c57cd9a df25732 1b279d5 fb73ff7 a10bc68 df25732 87ae702 1b279d5 87ae702 1b279d5 87ae702 df25732 1b279d5 a10bc68 72abfd9 a10bc68 1b279d5 c57cd9a 1b279d5 a10bc68 72abfd9 a10bc68 f6e34f2 c57cd9a 1b279d5 72abfd9 1b279d5 c8e8be4 72abfd9 1b279d5 f913a0b 72abfd9 f913a0b 87ae702 1b279d5 87ae702 1b279d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
import gradio as gr
from llm import end_interview, get_problem, read_last_message, send_request, speech_to_text, test_connection, text_to_speech
from options import fixed_messages, topics_list
default_audio_params = {
"label": "Record answer",
"sources": ["microphone"],
"type": "numpy",
"waveform_options": {"show_controls": False},
"editable": False,
"container": False,
"show_share_button": False,
}
def hide_settings():
init_acc = gr.Accordion("Settings", open=False)
start_btn = gr.Button("Generate a problem", interactive=False)
solution_acc = gr.Accordion("Solution", open=True)
end_btn = gr.Button("Finish the interview", interactive=True)
audio_input = gr.Audio(interactive=True, **default_audio_params)
return init_acc, start_btn, solution_acc, end_btn, audio_input
def add_interviewer_message(message):
def f(chat):
chat.append((None, message))
return chat
return f
def hide_solution():
solution_acc = gr.Accordion("Solution", open=False)
end_btn = gr.Button("Finish the interview", interactive=False)
problem_acc = gr.Accordion("Problem statement", open=False)
audio_input = gr.Audio(interactive=False, **default_audio_params)
return solution_acc, end_btn, problem_acc, audio_input
with gr.Blocks() as demo:
with gr.Tab("Instruction") as instruction_tab:
with gr.Row():
with gr.Column(scale=10):
gr.Markdown("# Welcome to the AI Tech Interviewer Training!")
gr.Markdown(
"""
This project leverages the latest AI models to simulate a realistic tech interview experience,
allowing you to practice your coding interview skills in an environment that closely mimics the real thing.
While it's not designed to replace a human interviewer or the essential steps of interview preparation, such as studying algorithms and practicing coding,
it serves as a valuable addition to your preparation arsenal.
"""
)
if os.getenv("IS_DEMO"):
gr.Markdown(
"""
### Demo Version Notice
**This is a demo version running on limited resources, which may respond slower than usual.**
It's primarily for demonstration purposes.
For optimal performance, we recommend running this application on your local machine using your own OpenAI API_KEY or local models.
See the instructions below on how to set up and run this application locally for the best experience.
I also recommend to read this introduction page first.
If you proceed to the interview interface right now, just click on the 'Coding' tab.
"""
)
gr.Markdown("### Introduction")
gr.Markdown("### Setting Up Locally")
gr.Markdown("### Interview Interface Overview")
gr.Markdown("### Models Configuration")
with gr.Column(scale=1):
try:
audio_test = text_to_speech("Handshake")
gr.Markdown("TTS status: π’")
except:
gr.Markdown("TTS status: π΄")
try:
text_test = speech_to_text(audio_test, False)
gr.Markdown("STT status: π’")
except:
gr.Markdown("STT status: π΄")
try:
test_connection()
gr.Markdown("LLM status: π’")
except:
gr.Markdown("LLM status: π΄")
pass
with gr.Tab("Coding") as coding_tab:
chat_history = gr.State([])
previous_code = gr.State("")
client = gr.State(None)
client_started = gr.State(False)
with gr.Accordion("Settings") as init_acc:
with gr.Row():
with gr.Column():
gr.Markdown("##### Problem settings")
with gr.Row():
gr.Markdown("Difficulty")
difficulty_select = gr.Dropdown(
label="Select difficulty",
choices=["Easy", "Medium", "Hard"],
value="Medium",
container=False,
allow_custom_value=True,
)
with gr.Row():
gr.Markdown("Topic (can type custom value)")
topic_select = gr.Dropdown(
label="Select topic", choices=topics_list, value="Arrays", container=False, allow_custom_value=True
)
with gr.Column(scale=2):
requirements = gr.Textbox(label="Requirements", placeholder="Specify additional requirements", lines=5)
start_btn = gr.Button("Generate a problem")
with gr.Accordion("Problem statement", open=True) as problem_acc:
description = gr.Markdown()
with gr.Accordion("Solution", open=False) as solution_acc:
with gr.Row() as content:
with gr.Column(scale=2):
code = gr.Code(
label="Please write your code here. Only Python syntax highlighting is available for now.",
language="python",
lines=35,
)
with gr.Column(scale=1):
end_btn = gr.Button("Finish the interview", interactive=False)
chat = gr.Chatbot(label="Chat", show_label=False, show_share_button=False)
audio_input = gr.Audio(interactive=False, **default_audio_params)
audio_output = gr.Audio(label="Play audio", autoplay=True, visible=False)
message = gr.Textbox(label="Message", lines=3, visible=False)
with gr.Accordion("Feedback", open=True) as feedback_acc:
feedback = gr.Markdown()
coding_tab.select(fn=add_interviewer_message(fixed_messages["intro"]), inputs=[chat], outputs=[chat])
start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).then(
fn=get_problem,
inputs=[requirements, difficulty_select, topic_select],
outputs=[description, chat_history],
scroll_to_output=True,
).then(fn=hide_settings, inputs=None, outputs=[init_acc, start_btn, solution_acc, end_btn, audio_input])
message.submit(
fn=send_request,
inputs=[code, previous_code, message, chat_history, chat],
outputs=[chat_history, chat, message, previous_code],
)
end_btn.click(
fn=add_interviewer_message(fixed_messages["end"]),
inputs=[chat],
outputs=[chat],
).then(
fn=end_interview, inputs=[description, chat_history], outputs=feedback
).then(fn=hide_solution, inputs=None, outputs=[solution_acc, end_btn, problem_acc, audio_input])
audio_input.stop_recording(fn=speech_to_text, inputs=[audio_input], outputs=[message]).then(
fn=lambda: None, inputs=None, outputs=[audio_input]
).then(
fn=send_request,
inputs=[code, previous_code, message, chat_history, chat],
outputs=[chat_history, chat, message, previous_code],
)
chat.change(fn=read_last_message, inputs=[chat], outputs=[audio_output])
audio_output.stop(fn=lambda: None, inputs=None, outputs=[audio_output])
demo.launch(show_api=False)
|