Spaces:
Runtime error
Runtime error
Commit
·
65757ca
1
Parent(s):
0c51c37
Update README.md
Browse files
README.md
CHANGED
@@ -47,7 +47,7 @@ evaluation_scores = module.compute(predictions=predictions, references=reference
|
|
47 |
- **predictions** (`list` of `list` of `dictionary`): a list of list of dictionary with every element's relation_type and their entity name
|
48 |
- **references** (`list` of `list` of `dictionary`): a list of list of dictionary with every element's relation_type and their entity name
|
49 |
- **mode** (`str`): define strict or boundaries mode for evaluation, strict mode consider "head_type" and "tail_type", boundaries mode doesn't consider "head_type" and "tail_type"
|
50 |
-
- **
|
51 |
- **relation_types** (`list`): define which relation type that need to be evaluate and show, if not given, it will construct relation_types from ground truth, default []
|
52 |
|
53 |
### Output Values
|
@@ -79,7 +79,7 @@ Output Example:
|
|
79 |
Remind : Macro_f1、Macro_p、Macro_r、p、r、f1 are always a number between 0 and 1. And tp、fp、fn depend on how many data inputs.
|
80 |
|
81 |
### Examples
|
82 |
-
Example1 : only one prediction and reference, mode=strict, only output total relation score
|
83 |
```python
|
84 |
metric_path = "Ikala-allen/relation_extraction"
|
85 |
module = evaluate.load(metric_path)
|
@@ -96,12 +96,12 @@ predictions = [
|
|
96 |
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
97 |
]
|
98 |
]
|
99 |
-
evaluation_scores = module.compute(predictions=predictions, references=references, mode="strict",
|
100 |
print(evaluation_scores)
|
101 |
>>> {'tp': 1, 'fp': 1, 'fn': 2, 'p': 50.0, 'r': 33.333333333333336, 'f1': 40.0, 'Macro_f1': 25.0, 'Macro_p': 25.0, 'Macro_r': 25.0}
|
102 |
```
|
103 |
|
104 |
-
Example2 : only one prediction and reference, mode=boundaries, only output total relation score
|
105 |
```python
|
106 |
metric_path = "Ikala-allen/relation_extraction"
|
107 |
module = evaluate.load(metric_path)
|
@@ -118,12 +118,12 @@ predictions = [
|
|
118 |
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
119 |
]
|
120 |
]
|
121 |
-
evaluation_scores = module.compute(predictions=predictions, references=references, mode="strict",
|
122 |
print(evaluation_scores)
|
123 |
-
>>> {'tp':
|
124 |
```
|
125 |
|
126 |
-
Example3 : two or more prediction and reference, mode=boundaries,
|
127 |
```python
|
128 |
metric_path = "Ikala-allen/relation_extraction"
|
129 |
module = evaluate.load(metric_path)
|
@@ -147,12 +147,12 @@ predictions = [
|
|
147 |
{'head': 'SNTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
|
148 |
]
|
149 |
]
|
150 |
-
evaluation_scores = module.compute(predictions=predictions, references=references, mode="boundaries",
|
151 |
print(evaluation_scores)
|
152 |
>>> {'sell': {'tp': 3, 'fp': 1, 'fn': 0, 'p': 75.0, 'r': 100.0, 'f1': 85.71428571428571}, 'belongs_to': {'tp': 0, 'fp': 0, 'fn': 1, 'p': 0, 'r': 0, 'f1': 0}, 'ALL': {'tp': 3, 'fp': 1, 'fn': 1, 'p': 75.0, 'r': 75.0, 'f1': 75.0, 'Macro_f1': 42.857142857142854, 'Macro_p': 37.5, 'Macro_r': 50.0}}
|
153 |
```
|
154 |
|
155 |
-
Example 4 : two or more prediction and reference, mode=boundaries,
|
156 |
```python
|
157 |
metric_path = "Ikala-allen/relation_extraction"
|
158 |
module = evaluate.load(metric_path)
|
@@ -176,7 +176,7 @@ predictions = [
|
|
176 |
{'head': 'SNTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
|
177 |
]
|
178 |
]
|
179 |
-
evaluation_scores = module.compute(predictions=predictions, references=references, mode="boundaries",
|
180 |
print(evaluation_scores)
|
181 |
>>> {'belongs_to': {'tp': 0, 'fp': 0, 'fn': 1, 'p': 0, 'r': 0, 'f1': 0}, 'ALL': {'tp': 0, 'fp': 0, 'fn': 1, 'p': 0, 'r': 0, 'f1': 0, 'Macro_f1': 0.0, 'Macro_p': 0.0, 'Macro_r': 0.0}}
|
182 |
```
|
|
|
47 |
- **predictions** (`list` of `list` of `dictionary`): a list of list of dictionary with every element's relation_type and their entity name
|
48 |
- **references** (`list` of `list` of `dictionary`): a list of list of dictionary with every element's relation_type and their entity name
|
49 |
- **mode** (`str`): define strict or boundaries mode for evaluation, strict mode consider "head_type" and "tail_type", boundaries mode doesn't consider "head_type" and "tail_type"
|
50 |
+
- **show** (`bool`): False for only output all relation_type score. True for output every relation_type score, default False
|
51 |
- **relation_types** (`list`): define which relation type that need to be evaluate and show, if not given, it will construct relation_types from ground truth, default []
|
52 |
|
53 |
### Output Values
|
|
|
79 |
Remind : Macro_f1、Macro_p、Macro_r、p、r、f1 are always a number between 0 and 1. And tp、fp、fn depend on how many data inputs.
|
80 |
|
81 |
### Examples
|
82 |
+
Example1 : only one prediction and reference, mode=strict, show=False, only output total relation score
|
83 |
```python
|
84 |
metric_path = "Ikala-allen/relation_extraction"
|
85 |
module = evaluate.load(metric_path)
|
|
|
96 |
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
97 |
]
|
98 |
]
|
99 |
+
evaluation_scores = module.compute(predictions=predictions, references=references, mode="strict", show=False, relation_types=[])
|
100 |
print(evaluation_scores)
|
101 |
>>> {'tp': 1, 'fp': 1, 'fn': 2, 'p': 50.0, 'r': 33.333333333333336, 'f1': 40.0, 'Macro_f1': 25.0, 'Macro_p': 25.0, 'Macro_r': 25.0}
|
102 |
```
|
103 |
|
104 |
+
Example2 : only one prediction and reference, mode=boundaries, show=False, only output total relation score
|
105 |
```python
|
106 |
metric_path = "Ikala-allen/relation_extraction"
|
107 |
module = evaluate.load(metric_path)
|
|
|
118 |
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
119 |
]
|
120 |
]
|
121 |
+
evaluation_scores = module.compute(predictions=predictions, references=references, mode="strict", show=False, relation_types=[])
|
122 |
print(evaluation_scores)
|
123 |
+
>>> {'tp': 1, 'fp': 1, 'fn': 2, 'p': 50.0, 'r': 33.333333333333336, 'f1': 40.0, 'Macro_f1': 25.0, 'Macro_p': 25.0, 'Macro_r': 25.0}
|
124 |
```
|
125 |
|
126 |
+
Example3 : two or more prediction and reference, mode=boundaries, show=True, output all relation type score
|
127 |
```python
|
128 |
metric_path = "Ikala-allen/relation_extraction"
|
129 |
module = evaluate.load(metric_path)
|
|
|
147 |
{'head': 'SNTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
|
148 |
]
|
149 |
]
|
150 |
+
evaluation_scores = module.compute(predictions=predictions, references=references, mode="boundaries", show=True, relation_types=[])
|
151 |
print(evaluation_scores)
|
152 |
>>> {'sell': {'tp': 3, 'fp': 1, 'fn': 0, 'p': 75.0, 'r': 100.0, 'f1': 85.71428571428571}, 'belongs_to': {'tp': 0, 'fp': 0, 'fn': 1, 'p': 0, 'r': 0, 'f1': 0}, 'ALL': {'tp': 3, 'fp': 1, 'fn': 1, 'p': 75.0, 'r': 75.0, 'f1': 75.0, 'Macro_f1': 42.857142857142854, 'Macro_p': 37.5, 'Macro_r': 50.0}}
|
153 |
```
|
154 |
|
155 |
+
Example 4 : two or more prediction and reference, mode=boundaries, show=True, output all relation type score, relation_types = ["belongs_to"], only consider belongs_to type score
|
156 |
```python
|
157 |
metric_path = "Ikala-allen/relation_extraction"
|
158 |
module = evaluate.load(metric_path)
|
|
|
176 |
{'head': 'SNTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
|
177 |
]
|
178 |
]
|
179 |
+
evaluation_scores = module.compute(predictions=predictions, references=references, mode="boundaries", show=True, relation_types=["belongs_to"])
|
180 |
print(evaluation_scores)
|
181 |
>>> {'belongs_to': {'tp': 0, 'fp': 0, 'fn': 1, 'p': 0, 'r': 0, 'f1': 0}, 'ALL': {'tp': 0, 'fp': 0, 'fn': 1, 'p': 0, 'r': 0, 'f1': 0, 'Macro_f1': 0.0, 'Macro_p': 0.0, 'Macro_r': 0.0}}
|
182 |
```
|