Spaces:
Runtime error
Runtime error
Commit
·
46c9e1a
1
Parent(s):
54553f6
Update README.md
Browse files
README.md
CHANGED
@@ -40,14 +40,14 @@ predictions = [
|
|
40 |
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
41 |
]
|
42 |
]
|
43 |
-
evaluation_scores = module.compute(predictions=predictions, references=references)
|
44 |
```
|
45 |
|
46 |
### Inputs
|
47 |
-
- **predictions** (`list` of `list` of `dictionary`):
|
48 |
-
- **references** (`list` of `list` of `dictionary`):
|
49 |
-
- **mode** (`str`): define strict or boundaries mode
|
50 |
-
- **only_all** (`bool`):
|
51 |
- **relation_types** (`list`): define relation type that need to be evaluate, if not given, it will construct relation_types from ground truth, default []
|
52 |
|
53 |
### Output Values
|
@@ -79,25 +79,58 @@ Output Example:
|
|
79 |
Remind : Macro_f1、Macro_p、Macro_r、p、r、f1 are always a number between 0 and 1. And tp、fp、fn depend on how many data inputs.
|
80 |
|
81 |
### Examples
|
82 |
-
|
83 |
```python
|
84 |
metric_path = "Ikala-allen/relation_extraction"
|
85 |
module = evaluate.load(metric_path)
|
86 |
references = [
|
87 |
[
|
88 |
-
{"head": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
|
|
90 |
]
|
91 |
]
|
|
|
|
|
92 |
predictions = [
|
93 |
[
|
94 |
{"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
95 |
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
96 |
]
|
97 |
]
|
98 |
-
|
|
|
|
|
|
|
99 |
print(evaluation_scores)
|
100 |
-
>>> {'
|
101 |
```
|
102 |
|
103 |
Example with two or more prediction and reference:
|
|
|
40 |
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
41 |
]
|
42 |
]
|
43 |
+
evaluation_scores = module.compute(predictions=predictions, references=references, mode = "strict")
|
44 |
```
|
45 |
|
46 |
### Inputs
|
47 |
+
- **predictions** (`list` of `list` of `dictionary`): a list of list of dictionary with every element's relation_type and their entity name
|
48 |
+
- **references** (`list` of `list` of `dictionary`): a list of list of dictionary with every element's relation_type and their entity name
|
49 |
+
- **mode** (`str`): define strict or boundaries mode for evaluation, strict mode consider "head_type" and "tail_type", boundaries mode doesn't consider "head_type" and "tail_type"
|
50 |
+
- **only_all** (`bool`): True for only output ["ALL"] relation_type score. False for output every relation_type score, default True
|
51 |
- **relation_types** (`list`): define relation type that need to be evaluate, if not given, it will construct relation_types from ground truth, default []
|
52 |
|
53 |
### Output Values
|
|
|
79 |
Remind : Macro_f1、Macro_p、Macro_r、p、r、f1 are always a number between 0 and 1. And tp、fp、fn depend on how many data inputs.
|
80 |
|
81 |
### Examples
|
82 |
+
Example1 : only one prediction and reference, mode = strict, consider only output ALL relation score
|
83 |
```python
|
84 |
metric_path = "Ikala-allen/relation_extraction"
|
85 |
module = evaluate.load(metric_path)
|
86 |
references = [
|
87 |
[
|
88 |
+
{"head": "phipigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
89 |
+
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
90 |
+
{'head': 'A醛賦活緊緻精華', 'tail': 'Serum', 'head_type': 'product', 'tail_type': 'category', 'type': 'belongs_to'},
|
91 |
+
]
|
92 |
+
]
|
93 |
+
|
94 |
+
# Example references (ground truth)
|
95 |
+
predictions = [
|
96 |
+
[
|
97 |
+
{"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
98 |
+
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
99 |
+
]
|
100 |
+
]
|
101 |
+
|
102 |
+
# Calculate evaluation scores using the loaded metric
|
103 |
+
evaluation_scores = module.compute(predictions=predictions, references=references, mode = "strict", only_all=True,relation_types = [])
|
104 |
+
|
105 |
+
print(evaluation_scores)
|
106 |
+
>>> {'tp': 1, 'fp': 1, 'fn': 2, 'p': 50.0, 'r': 33.333333333333336, 'f1': 40.0, 'Macro_f1': 25.0, 'Macro_p': 25.0, 'Macro_r': 25.0}
|
107 |
+
```
|
108 |
+
|
109 |
+
Example2 : only one prediction and reference, mode = boundaries, consider only output ALL relation score
|
110 |
+
```python
|
111 |
+
metric_path = "Ikala-allen/relation_extraction"
|
112 |
+
module = evaluate.load(metric_path)
|
113 |
+
references = [
|
114 |
+
[
|
115 |
+
{"head": "phipigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
116 |
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
117 |
+
{'head': 'A醛賦活緊緻精華', 'tail': 'Serum', 'head_type': 'product', 'tail_type': 'category', 'type': 'belongs_to'},
|
118 |
]
|
119 |
]
|
120 |
+
|
121 |
+
# Example references (ground truth)
|
122 |
predictions = [
|
123 |
[
|
124 |
{"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
125 |
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
126 |
]
|
127 |
]
|
128 |
+
|
129 |
+
# Calculate evaluation scores using the loaded metric
|
130 |
+
evaluation_scores = module.compute(predictions=predictions, references=references, mode = "strict", only_all=True,relation_types = [])
|
131 |
+
|
132 |
print(evaluation_scores)
|
133 |
+
>>> {'tp': 2, 'fp': 0, 'fn': 1, 'p': 100.0, 'r': 66.66666666666667, 'f1': 80.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}
|
134 |
```
|
135 |
|
136 |
Example with two or more prediction and reference:
|