Spaces:
Runtime error
Runtime error
Commit
·
3bde512
1
Parent(s):
619e946
Update README.md
Browse files
README.md
CHANGED
|
@@ -90,18 +90,13 @@ references = [
|
|
| 90 |
{'head': 'A醛賦活緊緻精華', 'tail': 'Serum', 'head_type': 'product', 'tail_type': 'category', 'type': 'belongs_to'},
|
| 91 |
]
|
| 92 |
]
|
| 93 |
-
|
| 94 |
-
# Example references (ground truth)
|
| 95 |
predictions = [
|
| 96 |
[
|
| 97 |
{"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
| 98 |
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
| 99 |
]
|
| 100 |
]
|
| 101 |
-
|
| 102 |
-
# Calculate evaluation scores using the loaded metric
|
| 103 |
evaluation_scores = module.compute(predictions=predictions, references=references, mode = "strict", only_all=True,relation_types = [])
|
| 104 |
-
|
| 105 |
print(evaluation_scores)
|
| 106 |
>>> {'tp': 1, 'fp': 1, 'fn': 2, 'p': 50.0, 'r': 33.333333333333336, 'f1': 40.0, 'Macro_f1': 25.0, 'Macro_p': 25.0, 'Macro_r': 25.0}
|
| 107 |
```
|
|
@@ -117,18 +112,13 @@ references = [
|
|
| 117 |
{'head': 'A醛賦活緊緻精華', 'tail': 'Serum', 'head_type': 'product', 'tail_type': 'category', 'type': 'belongs_to'},
|
| 118 |
]
|
| 119 |
]
|
| 120 |
-
|
| 121 |
-
# Example references (ground truth)
|
| 122 |
predictions = [
|
| 123 |
[
|
| 124 |
{"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
| 125 |
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
| 126 |
]
|
| 127 |
]
|
| 128 |
-
|
| 129 |
-
# Calculate evaluation scores using the loaded metric
|
| 130 |
evaluation_scores = module.compute(predictions=predictions, references=references, mode = "strict", only_all=True,relation_types = [])
|
| 131 |
-
|
| 132 |
print(evaluation_scores)
|
| 133 |
>>> {'tp': 2, 'fp': 0, 'fn': 1, 'p': 100.0, 'r': 66.66666666666667, 'f1': 80.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}
|
| 134 |
```
|
|
@@ -137,7 +127,6 @@ Example3 : two or more prediction and reference, mode = boundaries, only output
|
|
| 137 |
```python
|
| 138 |
metric_path = "Ikala-allen/relation_extraction"
|
| 139 |
module = evaluate.load(metric_path)
|
| 140 |
-
# Define your predictions and references
|
| 141 |
references = [
|
| 142 |
[
|
| 143 |
{"head": "phipigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
|
@@ -148,8 +137,6 @@ references = [
|
|
| 148 |
{'head': 'A醛賦活緊緻精華', 'tail': 'Serum', 'head_type': 'product', 'tail_type': 'category', 'type': 'belongs_to'},
|
| 149 |
]
|
| 150 |
]
|
| 151 |
-
|
| 152 |
-
# Example references (ground truth)
|
| 153 |
predictions = [
|
| 154 |
[
|
| 155 |
{"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
|
@@ -160,10 +147,7 @@ predictions = [
|
|
| 160 |
{'head': 'SNTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
|
| 161 |
]
|
| 162 |
]
|
| 163 |
-
|
| 164 |
-
# Calculate evaluation scores using the loaded metric
|
| 165 |
evaluation_scores = module.compute(predictions=predictions, references=references, mode = "boundaries", only_all = False, relation_types = [])
|
| 166 |
-
|
| 167 |
print(evaluation_scores)
|
| 168 |
>>> {'sell': {'tp': 3, 'fp': 1, 'fn': 0, 'p': 75.0, 'r': 100.0, 'f1': 85.71428571428571}, 'belongs_to': {'tp': 0, 'fp': 0, 'fn': 1, 'p': 0, 'r': 0, 'f1': 0}, 'ALL': {'tp': 3, 'fp': 1, 'fn': 1, 'p': 75.0, 'r': 75.0, 'f1': 75.0, 'Macro_f1': 42.857142857142854, 'Macro_p': 37.5, 'Macro_r': 50.0}}
|
| 169 |
```
|
|
@@ -182,8 +166,6 @@ references = [
|
|
| 182 |
{'head': 'A醛賦活緊緻精華', 'tail': 'Serum', 'head_type': 'product', 'tail_type': 'category', 'type': 'belongs_to'},
|
| 183 |
]
|
| 184 |
]
|
| 185 |
-
|
| 186 |
-
# Example references (ground truth)
|
| 187 |
predictions = [
|
| 188 |
[
|
| 189 |
{"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
|
|
|
| 90 |
{'head': 'A醛賦活緊緻精華', 'tail': 'Serum', 'head_type': 'product', 'tail_type': 'category', 'type': 'belongs_to'},
|
| 91 |
]
|
| 92 |
]
|
|
|
|
|
|
|
| 93 |
predictions = [
|
| 94 |
[
|
| 95 |
{"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
| 96 |
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
| 97 |
]
|
| 98 |
]
|
|
|
|
|
|
|
| 99 |
evaluation_scores = module.compute(predictions=predictions, references=references, mode = "strict", only_all=True,relation_types = [])
|
|
|
|
| 100 |
print(evaluation_scores)
|
| 101 |
>>> {'tp': 1, 'fp': 1, 'fn': 2, 'p': 50.0, 'r': 33.333333333333336, 'f1': 40.0, 'Macro_f1': 25.0, 'Macro_p': 25.0, 'Macro_r': 25.0}
|
| 102 |
```
|
|
|
|
| 112 |
{'head': 'A醛賦活緊緻精華', 'tail': 'Serum', 'head_type': 'product', 'tail_type': 'category', 'type': 'belongs_to'},
|
| 113 |
]
|
| 114 |
]
|
|
|
|
|
|
|
| 115 |
predictions = [
|
| 116 |
[
|
| 117 |
{"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
| 118 |
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
| 119 |
]
|
| 120 |
]
|
|
|
|
|
|
|
| 121 |
evaluation_scores = module.compute(predictions=predictions, references=references, mode = "strict", only_all=True,relation_types = [])
|
|
|
|
| 122 |
print(evaluation_scores)
|
| 123 |
>>> {'tp': 2, 'fp': 0, 'fn': 1, 'p': 100.0, 'r': 66.66666666666667, 'f1': 80.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}
|
| 124 |
```
|
|
|
|
| 127 |
```python
|
| 128 |
metric_path = "Ikala-allen/relation_extraction"
|
| 129 |
module = evaluate.load(metric_path)
|
|
|
|
| 130 |
references = [
|
| 131 |
[
|
| 132 |
{"head": "phipigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
|
|
|
| 137 |
{'head': 'A醛賦活緊緻精華', 'tail': 'Serum', 'head_type': 'product', 'tail_type': 'category', 'type': 'belongs_to'},
|
| 138 |
]
|
| 139 |
]
|
|
|
|
|
|
|
| 140 |
predictions = [
|
| 141 |
[
|
| 142 |
{"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
|
|
|
| 147 |
{'head': 'SNTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
|
| 148 |
]
|
| 149 |
]
|
|
|
|
|
|
|
| 150 |
evaluation_scores = module.compute(predictions=predictions, references=references, mode = "boundaries", only_all = False, relation_types = [])
|
|
|
|
| 151 |
print(evaluation_scores)
|
| 152 |
>>> {'sell': {'tp': 3, 'fp': 1, 'fn': 0, 'p': 75.0, 'r': 100.0, 'f1': 85.71428571428571}, 'belongs_to': {'tp': 0, 'fp': 0, 'fn': 1, 'p': 0, 'r': 0, 'f1': 0}, 'ALL': {'tp': 3, 'fp': 1, 'fn': 1, 'p': 75.0, 'r': 75.0, 'f1': 75.0, 'Macro_f1': 42.857142857142854, 'Macro_p': 37.5, 'Macro_r': 50.0}}
|
| 153 |
```
|
|
|
|
| 166 |
{'head': 'A醛賦活緊緻精華', 'tail': 'Serum', 'head_type': 'product', 'tail_type': 'category', 'type': 'belongs_to'},
|
| 167 |
]
|
| 168 |
]
|
|
|
|
|
|
|
| 169 |
predictions = [
|
| 170 |
[
|
| 171 |
{"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|