Spaces:
Runtime error
Runtime error
Commit
·
24a5443
1
Parent(s):
82009ff
Update README.md
Browse files
README.md
CHANGED
@@ -23,15 +23,8 @@ This metric can be used in relation extraction evaluation.
|
|
23 |
This metric takes 2 inputs, prediction and references(ground truth). Both of them are a list of list of dictionary of entity's name and entity's type:
|
24 |
```
|
25 |
>>> import evaluate
|
26 |
-
|
27 |
-
load metric
|
28 |
-
|
29 |
>>> metric_path = "Ikala-allen/relation_extraction"
|
30 |
>>> module = evaluate.load(metric_path)
|
31 |
-
|
32 |
-
Define your predictions and references
|
33 |
-
Example references (ground truth)
|
34 |
-
|
35 |
>>> references = [
|
36 |
... [
|
37 |
... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
@@ -39,8 +32,6 @@ Example references (ground truth)
|
|
39 |
... ]
|
40 |
... ]
|
41 |
|
42 |
-
Example predictions
|
43 |
-
|
44 |
>>> predictions = [
|
45 |
... [
|
46 |
... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
@@ -48,8 +39,6 @@ Example predictions
|
|
48 |
... ]
|
49 |
... ]
|
50 |
|
51 |
-
Calculate evaluation scores using the loaded metric
|
52 |
-
|
53 |
>>> evaluation_scores = module.compute(predictions=predictions, references=references)
|
54 |
>>> print(evaluation_scores)
|
55 |
{'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
|
@@ -92,28 +81,18 @@ Example of only one prediction and reference:
|
|
92 |
```python
|
93 |
>>> metric_path = "Ikala-allen/relation_extraction"
|
94 |
>>> module = evaluate.load(metric_path)
|
95 |
-
|
96 |
-
Define your predictions and references
|
97 |
-
Example references (ground truth)
|
98 |
-
|
99 |
>>> references = [
|
100 |
... [
|
101 |
... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
102 |
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
103 |
... ]
|
104 |
... ]
|
105 |
-
|
106 |
-
Example predictions
|
107 |
-
|
108 |
>>> predictions = [
|
109 |
... [
|
110 |
... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
111 |
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
112 |
... ]
|
113 |
... ]
|
114 |
-
|
115 |
-
Calculate evaluation scores using the loaded metric
|
116 |
-
|
117 |
>>> evaluation_scores = module.compute(predictions=predictions, references=references)
|
118 |
>>> print(evaluation_scores)
|
119 |
{'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
|
@@ -123,22 +102,14 @@ Example with two or more prediction and reference:
|
|
123 |
```python
|
124 |
>>> metric_path = "Ikala-allen/relation_extraction"
|
125 |
>>> module = evaluate.load(metric_path)
|
126 |
-
|
127 |
-
Define your predictions and references
|
128 |
-
Example references (ground truth)
|
129 |
-
|
130 |
>>> references = [
|
131 |
... [
|
132 |
... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
133 |
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
134 |
... ],[
|
135 |
-
... {'head': 'SABONTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
|
136 |
-
... {'head': 'SABONTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
|
137 |
... ]
|
138 |
... ]
|
139 |
-
|
140 |
-
Example predictions
|
141 |
-
|
142 |
>>> predictions = [
|
143 |
... [
|
144 |
... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
@@ -148,9 +119,6 @@ Example predictions
|
|
148 |
... {'head': 'SNTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
|
149 |
... ]
|
150 |
... ]
|
151 |
-
|
152 |
-
Calculate evaluation scores using the loaded metric
|
153 |
-
|
154 |
>>> evaluation_scores = module.compute(predictions=predictions, references=references)
|
155 |
>>> print(evaluation_scores)
|
156 |
{'sell': {'tp': 2, 'fp': 2, 'fn': 1, 'p': 50.0, 'r': 66.66666666666667, 'f1': 57.142857142857146}, 'ALL': {'tp': 2, 'fp': 2, 'fn': 1, 'p': 50.0, 'r': 66.66666666666667, 'f1': 57.142857142857146, 'Macro_f1': 57.142857142857146, 'Macro_p': 50.0, 'Macro_r': 66.66666666666667}}
|
|
|
23 |
This metric takes 2 inputs, prediction and references(ground truth). Both of them are a list of list of dictionary of entity's name and entity's type:
|
24 |
```
|
25 |
>>> import evaluate
|
|
|
|
|
|
|
26 |
>>> metric_path = "Ikala-allen/relation_extraction"
|
27 |
>>> module = evaluate.load(metric_path)
|
|
|
|
|
|
|
|
|
28 |
>>> references = [
|
29 |
... [
|
30 |
... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
|
|
32 |
... ]
|
33 |
... ]
|
34 |
|
|
|
|
|
35 |
>>> predictions = [
|
36 |
... [
|
37 |
... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
|
|
39 |
... ]
|
40 |
... ]
|
41 |
|
|
|
|
|
42 |
>>> evaluation_scores = module.compute(predictions=predictions, references=references)
|
43 |
>>> print(evaluation_scores)
|
44 |
{'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
|
|
|
81 |
```python
|
82 |
>>> metric_path = "Ikala-allen/relation_extraction"
|
83 |
>>> module = evaluate.load(metric_path)
|
|
|
|
|
|
|
|
|
84 |
>>> references = [
|
85 |
... [
|
86 |
... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
87 |
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
88 |
... ]
|
89 |
... ]
|
|
|
|
|
|
|
90 |
>>> predictions = [
|
91 |
... [
|
92 |
... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
93 |
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
94 |
... ]
|
95 |
... ]
|
|
|
|
|
|
|
96 |
>>> evaluation_scores = module.compute(predictions=predictions, references=references)
|
97 |
>>> print(evaluation_scores)
|
98 |
{'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
|
|
|
102 |
```python
|
103 |
>>> metric_path = "Ikala-allen/relation_extraction"
|
104 |
>>> module = evaluate.load(metric_path)
|
|
|
|
|
|
|
|
|
105 |
>>> references = [
|
106 |
... [
|
107 |
... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
108 |
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
109 |
... ],[
|
110 |
+
... {'head': 'SABONTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
|
|
|
111 |
... ]
|
112 |
... ]
|
|
|
|
|
|
|
113 |
>>> predictions = [
|
114 |
... [
|
115 |
... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
|
|
119 |
... {'head': 'SNTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
|
120 |
... ]
|
121 |
... ]
|
|
|
|
|
|
|
122 |
>>> evaluation_scores = module.compute(predictions=predictions, references=references)
|
123 |
>>> print(evaluation_scores)
|
124 |
{'sell': {'tp': 2, 'fp': 2, 'fn': 1, 'p': 50.0, 'r': 66.66666666666667, 'f1': 57.142857142857146}, 'ALL': {'tp': 2, 'fp': 2, 'fn': 1, 'p': 50.0, 'r': 66.66666666666667, 'f1': 57.142857142857146, 'Macro_f1': 57.142857142857146, 'Macro_p': 50.0, 'Macro_r': 66.66666666666667}}
|