Ikala-allen commited on
Commit
24a5443
·
1 Parent(s): 82009ff

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -33
README.md CHANGED
@@ -23,15 +23,8 @@ This metric can be used in relation extraction evaluation.
23
  This metric takes 2 inputs, prediction and references(ground truth). Both of them are a list of list of dictionary of entity's name and entity's type:
24
  ```
25
  >>> import evaluate
26
-
27
- load metric
28
-
29
  >>> metric_path = "Ikala-allen/relation_extraction"
30
  >>> module = evaluate.load(metric_path)
31
-
32
- Define your predictions and references
33
- Example references (ground truth)
34
-
35
  >>> references = [
36
  ... [
37
  ... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
@@ -39,8 +32,6 @@ Example references (ground truth)
39
  ... ]
40
  ... ]
41
 
42
- Example predictions
43
-
44
  >>> predictions = [
45
  ... [
46
  ... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
@@ -48,8 +39,6 @@ Example predictions
48
  ... ]
49
  ... ]
50
 
51
- Calculate evaluation scores using the loaded metric
52
-
53
  >>> evaluation_scores = module.compute(predictions=predictions, references=references)
54
  >>> print(evaluation_scores)
55
  {'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
@@ -92,28 +81,18 @@ Example of only one prediction and reference:
92
  ```python
93
  >>> metric_path = "Ikala-allen/relation_extraction"
94
  >>> module = evaluate.load(metric_path)
95
-
96
- Define your predictions and references
97
- Example references (ground truth)
98
-
99
  >>> references = [
100
  ... [
101
  ... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
102
  ... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
103
  ... ]
104
  ... ]
105
-
106
- Example predictions
107
-
108
  >>> predictions = [
109
  ... [
110
  ... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
111
  ... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
112
  ... ]
113
  ... ]
114
-
115
- Calculate evaluation scores using the loaded metric
116
-
117
  >>> evaluation_scores = module.compute(predictions=predictions, references=references)
118
  >>> print(evaluation_scores)
119
  {'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
@@ -123,22 +102,14 @@ Example with two or more prediction and reference:
123
  ```python
124
  >>> metric_path = "Ikala-allen/relation_extraction"
125
  >>> module = evaluate.load(metric_path)
126
-
127
- Define your predictions and references
128
- Example references (ground truth)
129
-
130
  >>> references = [
131
  ... [
132
  ... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
133
  ... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
134
  ... ],[
135
- ... {'head': 'SABONTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'},
136
- ... {'head': 'SABONTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
137
  ... ]
138
  ... ]
139
-
140
- Example predictions
141
-
142
  >>> predictions = [
143
  ... [
144
  ... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
@@ -148,9 +119,6 @@ Example predictions
148
  ... {'head': 'SNTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
149
  ... ]
150
  ... ]
151
-
152
- Calculate evaluation scores using the loaded metric
153
-
154
  >>> evaluation_scores = module.compute(predictions=predictions, references=references)
155
  >>> print(evaluation_scores)
156
  {'sell': {'tp': 2, 'fp': 2, 'fn': 1, 'p': 50.0, 'r': 66.66666666666667, 'f1': 57.142857142857146}, 'ALL': {'tp': 2, 'fp': 2, 'fn': 1, 'p': 50.0, 'r': 66.66666666666667, 'f1': 57.142857142857146, 'Macro_f1': 57.142857142857146, 'Macro_p': 50.0, 'Macro_r': 66.66666666666667}}
 
23
  This metric takes 2 inputs, prediction and references(ground truth). Both of them are a list of list of dictionary of entity's name and entity's type:
24
  ```
25
  >>> import evaluate
 
 
 
26
  >>> metric_path = "Ikala-allen/relation_extraction"
27
  >>> module = evaluate.load(metric_path)
 
 
 
 
28
  >>> references = [
29
  ... [
30
  ... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
 
32
  ... ]
33
  ... ]
34
 
 
 
35
  >>> predictions = [
36
  ... [
37
  ... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
 
39
  ... ]
40
  ... ]
41
 
 
 
42
  >>> evaluation_scores = module.compute(predictions=predictions, references=references)
43
  >>> print(evaluation_scores)
44
  {'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
 
81
  ```python
82
  >>> metric_path = "Ikala-allen/relation_extraction"
83
  >>> module = evaluate.load(metric_path)
 
 
 
 
84
  >>> references = [
85
  ... [
86
  ... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
87
  ... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
88
  ... ]
89
  ... ]
 
 
 
90
  >>> predictions = [
91
  ... [
92
  ... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
93
  ... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
94
  ... ]
95
  ... ]
 
 
 
96
  >>> evaluation_scores = module.compute(predictions=predictions, references=references)
97
  >>> print(evaluation_scores)
98
  {'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
 
102
  ```python
103
  >>> metric_path = "Ikala-allen/relation_extraction"
104
  >>> module = evaluate.load(metric_path)
 
 
 
 
105
  >>> references = [
106
  ... [
107
  ... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
108
  ... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
109
  ... ],[
110
+ ... {'head': 'SABONTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
 
111
  ... ]
112
  ... ]
 
 
 
113
  >>> predictions = [
114
  ... [
115
  ... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
 
119
  ... {'head': 'SNTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
120
  ... ]
121
  ... ]
 
 
 
122
  >>> evaluation_scores = module.compute(predictions=predictions, references=references)
123
  >>> print(evaluation_scores)
124
  {'sell': {'tp': 2, 'fp': 2, 'fn': 1, 'p': 50.0, 'r': 66.66666666666667, 'f1': 57.142857142857146}, 'ALL': {'tp': 2, 'fp': 2, 'fn': 1, 'p': 50.0, 'r': 66.66666666666667, 'f1': 57.142857142857146, 'Macro_f1': 57.142857142857146, 'Macro_p': 50.0, 'Macro_r': 66.66666666666667}}