File size: 4,014 Bytes
4e28bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
authorPubEdges <- function(keywords,pub_start_date,pub_end_date){
  
  keywords <- keywords
  pub_start_date <- pub_start_date
  pub_end_date <- pub_end_date
  
  # create search engine function
  search_engine <- function(keywords,pub_start_date,pub_end_date){
    suppressPackageStartupMessages(library(openalexR))
    suppressPackageStartupMessages(library(tidyverse))
    
    options(openalexR.mailto = "[email protected]")
    
    # search engine
    works_search <- oa_fetch(
      entity = "works",
      title.search = c(keywords),
      cited_by_count = ">50",
      from_publication_date = pub_start_date,
      to_publication_date = pub_end_date,
      options = list(sort = "cited_by_count:desc"),
      verbose = FALSE
    )
    
    return(works_search)
    
  }
  
  # import nodes function
  source("openAlexNodes.R")
  
  # run author nodes function
  author_nodes <- authorPubNodes(keywords,pub_start_date,pub_end_date)
  
  # run search engine
  search_data <- search_engine(keywords,pub_start_date,pub_end_date)
  
  
  # grab authors and group them according to collaboration
  authors_collaboration_groups <- list()
  for (i in 1:nrow(search_data)){
    authors_collaboration_groups[[i]] <- search_data$author[[i]][2]
  }
  
  # grab all authors
  all_authors <- c()
  for (i in 1:length(authors_collaboration_groups)) {
    all_authors <- c(all_authors,authors_collaboration_groups[[i]][[1]])
  }
  
  # get length of each authors collaboration
  authors_length <- c()
  for(authors in 1:length(authors_collaboration_groups)){
    authors_length <- c(authors_length,authors_collaboration_groups[[authors]] |> nrow())
  }
  
  # grab all publications
  publications <- list()
  for (i in 1:nrow(search_data)){
    publications[[i]] <- rep(search_data$display_name[i], each = authors_length[i])
  }
  
  # place all publications in a vector
  all_publications <- c()
  for(i in 1:length(publications)){
    all_publications <- c(all_publications,publications[[i]])
  }
  
  # create author_to_publication data frame
  authors_to_publications <- data.frame(
    Authors = all_authors,
    Publications = all_publications
  )
  
  # create edges data frame
  author_publication_edges <- data.frame(
    Source = authors_to_publications$Authors,
    Target = authors_to_publications$Publications,
    Type = "directed",
    Weight = 1.0
  )
  
  
  # replace edges with id from nodes data set
  replace_edges_with_ids <- function(author_edges, author_nodes) {
    # Create a lookup table for node values to their corresponding Ids
    node_lookup <- setNames(author_nodes$Id, author_nodes$Node)
    
    # Use the lookup table to replace Source and Target values in author_edges
    author_edges$Source <- node_lookup[author_edges$Source]
    author_edges$Target <- node_lookup[author_edges$Target]
    
    return(author_edges)
  }
  
  # Call the function with your data frames
  author_publication_edges <- replace_edges_with_ids(author_publication_edges, nodes_df)
  
  return(author_publication_edges)
  
  
}

# tictoc::tic()
# authorPub_data <- search_engine(keywords = c("data","deep learning","analytics"),
#                                 pub_start_date = "2021-01-01",
#                                 pub_end_date = "2022-12-31")
# tictoc::toc()
# 
# 
# tictoc::tic()
# author_nodes <- authorPubNodes(search_data = authorPub_data)
# tictoc::toc()
# author_nodes |> view()
# 
# tictoc::tic()
 author_edges <- authorPubEdges(keywords = c("data","deep learning","analytics"),
                                pub_start_date = "2021-01-01",
                                pub_end_date = "2022-12-31")
# tictoc::toc()
# 
# author_edges |> view()
# 
# write.csv(author_edges,file = "authorPubEdges2.csv")

edges_pub <- authorPubEdges(keywords = c("data","deep learning","analytics"),
                            pub_start_date = "2021-01-01",
                            pub_end_date = "2022-12-31")

edges_pub |> view()

write.csv(edges_pub,file = "edges_pub.csv",row.names = F)